
Potential Experiments/areas to tackle

Scenario

Existing Egeria cohort including metadata repository, UI components
Kafka already deployed
I want to add a connector to a new technology

build my  connector / metadata access store  integration
create my image
deploy it in k8s
must work as part of existing cohort

Proof points

# Area Objective Current Status Who

1 Containers Build customized containers with only the content required for a particular usage:

Start with integration connector
figure out approach to gathering correct runtime dependencies easily
figure out parameterization needed to make this a useful starting point for orgs
Exclude: 

Value: Can help in short term with existing model - already see need for this

Already being looked at for IBM/HMS Nigel

2a Application Create a streamlined application which can startup a single server (and shutdown 
cleanly - we have concern here with egeria) when application is launched, based off 
an existing configuration.

Should be runnable from the command line, and just launch as a process. It can 
consume files/environment variables (in k8s these can be mapped from config maps, 
secrets etc). will not update configuration

Figure out how much, if any, of existing platform/admin is needed/can be reused.

Specifically needs to be able to run a server hosting an integration connector

Value: Could be used even in short-medium term as a convenience to start single 
platform

Ljupch
o ++ 
David

3 Operator Create custom resource definition for a 'server' (just 1 per 'platform' aka java 
process) & create an operator that can deploy/undeploy a pod containing running this 
server, as well as a service based on a pre-existing configuration:

probably Java (rather than go) - general team skills?
use autostart as an initial 'hack'

Value: Allows for active management in k8s environment

see egeria-kubernetes-operator for 
a) platform operator in go
b) initial port of above to java

Nigel

4 Document Document our design principles ie only use of ephemeral storage (create another 
wiki page?)

Value: Information sharing, reviews, consensus

Design Principles for Cloud native 
Egeria

all 

5 Configuration
/storage

Determine how egeria server has no dependency on persistent storage – ie which 
connectors/mechanisms are needed for storage ie potentially including

Configuration
Cohort registry
audit log
(metadata repositories)

Consider use of existing kubernetes resources - directly or via mapping -  config 
maps, secrets, custom resources

Look at read/write, concurrent access from multiple servers or replicas (for example 
we know config documents get written to during startup)

All must be accessible from a k8s operator in addition to other ways

Develop appropriate connectors and/or techniques to support

Excluded: security connector

Value: Simplification and ultimately critically important in k8s environment

Existing operator uses configmaps nigel

taylan

https://wiki.lfaidata.foundation/display/EG/Design+Principles+for+Cloud+native+Egeria
https://wiki.lfaidata.foundation/display/EG/Design+Principles+for+Cloud+native+Egeria


6  Configuration Ensure configuration 'makes sense' at runtime. 

Review configuration

For example endpoints may refer to other servers within a k8s cluster, or to 3rd party 
technologies externally. Late binding is exactly needed.

Consider metadata collection id - may need to assert value

Some information required to be kept secret - auth info, certs. these must be able to 
be pointed to - ie in a key store, or something like a k8s secret

Develop proposal to handle. For example it may be sufficient to use hostnames 
which can be easily defined by an org in dns (static environments) or by k8s services

we don't think this is an issue

 - just preconfig the metadata colection 
id

 - host mapping should work for 
endpoints

certs etc point to locations on 
filesystem - just need to map to 
mounted volumes from configmaps
etc.,

n/a

7 microprofile 
vs spring what benefits?

interoperable with spring services?

same 7 + 8 n/a

8 footprint Can we get a integration connector to deploy and work reliably in 1Gb or less? 
How low can we go
Can we improve with spring?
Does microprofile help?

n/a

9 scenario Combine above into a broader demo environment n/a

10 configuration authoring n/a

readiness, 
liveness, 
probes
/healthchecks

Service dependencies, monitoring. How is this exposed. application needs to expose 
. k8s monitoring. part of application

Taylan


	Potential Experiments/areas to tackle

