
MEP 35 -- RBAC 2 - Support more object types

Summary

Implement the basic framework of permission management to ensure that permissions can be controlled for common APIs.

Motivation

At present, rbac only implements the permission management of some collection APIs, and the permission classification is not clear, and some collection-
related permissions cannot be classified, such as ShowCollections. At the same time, there are also many commonly used APIs that do not have 
permission control, such as collection data operations, user and role definitions, and permission management.
The expectation of this project is to further divide permissions, define APIs such as resource structural operations, resource lists, and permission 
management as Global type permissions, and add permission verification to Index-related operations in Collections. The realization of these functions can 
ensure that the system can perform rough authority management on resources.

Design Details

The key concepts to understanding access control are:

Object: An entity to which access can be granted. Unless allowed by a grant, access will be denied.

Role: An entity to which privileges can be granted. Roles are in turn assigned to users.

Privilege: A defined level of access to an object. Multiple distinct privileges may be used to control the granularity of access granted.

User: A user identity recognized by Milvus, is used to determine whether there is permission to execute the api.

According to the system requirements, create the corresponding Role and grant the Privilege required by the Role. Bind the relevant Role to the User, and 
the User can obtain the relevant Privilege granted to the Role. When the relevant permissions need to be revoked, the relationship between the User and 
the Role is unbound. (Note: You cannot directly grant permissions to users)

Permission Category Details

Collection

Privilege Object Desc

CreateIndex Collection

DropIndex Collection

IndexDetail Collection DescribeIndex
GetIndexState/GetIndexBuildProgress

Load Collection LoadCollection

Release Collection
/Partition

ReleaseCollection



Insert Collection This type of operation will involve two resources, Collection and Partition, and only deal with the Collection category 
first.

Delete Collection

Search Collection

Flush Collection

Query Collection

GetStatistics Collection
/Partition

GetCollectionStatistics

Compaction Collection

Alias Collection CreateAlias/DropAlias/AlterAlias

Import Collection

LoadBalance Collection

Global

Privilege Object Desc

All Global

CreateCollection Global CreateCollection

DropCollection Global DropCollection

DescribeCollection Global DescribeCollection

ShowCollections Global

CreateOwnership Global CreateUser CreateRole

DropOwnership Global DeleteCredential DropRole

SelectOwnership Global SelectRole/SelectGrant

ManageOwnership Global OperateUserRole OperatePrivilege

User

Privilege Object Desc

UpdateUser User UpdateCredential

SelectUser User SelectUser

This makes it easier for users to obtain and change information about their own accounts

Partition

Note: Permissions involving PARTITION will not be processed in this demand.

Privilege Object Desc

CreatePartition Global

DropPartition Global

ShowPartitions Global

Load Partition

Release Partition

GetStatistics Partition

Other



Note: Low-priority permission classification, temporarily not processed

CalcDistance Global Multiple collections are involved. Currently, this function is basically not used in scenarios.

GetMetrics Global Get milvus service information, such as server configuration, cluster information, data transmission information, which is not 
the core.

GetFlushState Global Required by qa and devops. The test case uses a lot of this interface, and users generally do not need it.

GetSegmentInfo Global

GetReplicas Global

SelectResource Global It is indicated in the use document that no separate interface is required, consider deleting it.

HasCollection Global Basic permissions, assigned to the PUBLIC role (this is mainly called first during the creation process, this is actually 
unnecessary)

HasPartition Global

Default Roles

There are five default roles: super, admin, manager, general, public.

Role name Privileges

super

admin

ALL

admin CreateCollection DescribeCollection DropCollection ShowCollections CreateOwnership DropOwnership
SelectOwnership ManageOwnership
SelectUser/ALL

manager CreateCollection DropCollection ShowCollections DescribeCollection

general CreateCollection

public

Privilege Entity

Privilege: Record the correspondence between permissions and objects.
How to save it?

Option I: Store in Metatable

Table

object privilege updated_time is_deleted created_time

Schema
/prefix/credential/privileges/{object}/{privilege}
Pros and Cons
Pros:

Privilege Entity can be dynamically added.

Cons:

This part of the data is easy to modify, because metatable can modify the data without connecting to milvus, such as directly connecting to etcd. 
After the data is modified, the rbac function will not work.

This part of the data will bring compatibility problems, because relevant permission information, such as privilege name, needs to be filled in when 
authorizing. If this part of the data is modified and the client is not upgraded in time, the authorization operation will fail.



Option II: Use the constant variable in the code (APPLY)

Pros and Cons
Pros:

The relationship between objects and permissions is not broken.

When verifying the privilege, the information is directly obtained from the constant, and does not involve reading information from the table.

Cons:

As in metatable, there will be compatibility problems.


	MEP 35 -- RBAC 2 - Support more object types

