
MEP 29 -- Support Role-Based Access Control
Current state: Under Discussion

Summary

To control users' access to resources like collections in Milvus.

Motivation

There is no basic security model for resource access in Milvus currently. Users can do damage to data either intentionally or unintentionally.

This project aims to support role-based access control. Users can do their operations according to the privileges assigned to them. And administrators of
the Milvus cluster can manage users and operations under control.

Design Details

Entities

User: Every user has a unique identifier and is assigned a number of privileges.

Resource Types: Resources defined in Milvus service, like collection, database, etc.

Privilege: Permissions to specific resource.

Role mapping: The mapping between users and roles.

Privilege mapping: The privileges users or roles having for a specific resource.

Additionally, when Milvus service is deployed in cloud, there will be a namespace for each Milvus cluster called tenant.

DB Schema for entities

1User

id tenant username is_super is_deleted created_time updated_time

Attribute is_super is true for root user, meaning the root is a super user.

The root user is created by default for each cluster and has all permissions across the cluster.

The root user does not belong to any role.

2Resource Types

id resource created_time

Resource types are globally unique, no need to add attribute tenant for it.

3Privilege

id tenant resource_type privilege updated_time is_deleted created_time

4Role

id tenant role_name updated_time is_deleted created_time

5Role mapping

id tenant user_id role_id is_deleted created_time

By design, a role inherited from another role is not possible here.

6Privilege grants of resource COLLECTION

id tenant grantor_name principal_name principal_type collection_priv collection_id is_deleted created_time

Grantor_name is the user who grants the privileges.
Principal_name is the target which grantor grants privileges to.
The value of principal_type are USER or ROLE.
Collection_priv is the privilege to a collection, like SELECT, INSERT, UPDATE, etc.

For some collections which have alias, it will first get the real collection of the alias. Privilege verification will be based on the real collection not the alias.
Collections stored in the table are also the real collection, not the alias.

The wildcard mode is supported for the collections in the table.

7Privilege grants of resource DATABASE Not used since database is not supported in Milvus for now()

id tenant grantor_name principal_name principal_type db_priv db_id is_deleted created_time

Db_priv is the privilege to a database, like CREATE, DROP, etc.

KV Store Schema

1User

/prefix/credential/users/{tenant}/{username} {"k1": "v1", "k2": "v2"}

2Resource Types

/prefix/credential/resources/{resourceType} nil

3Privilege

/prefix/credential/privileges/{tenant}/{resourceType}/{privilege} nil

4Role

/prefix/credential/roles/{tenant}/{rolename} nil

5Role mapping

/prefix/credential/user-role-mapping/{tenant}/{username}/{rolename} nil

6Privilege Grants

/prefix/credential/privilege-grants/{tenant}/{principalType}/{principalName}/
{resourceType}/{resourceName}

[{"resource":"SELECT", "grantor":"Alice"}, {"resource":"
UPDATE", "grantor":"Bob"}]

Resources & Privileges defined in Milvus

Users/Roles can be granted the following privileges:

Privileges Resources

ALL Collection

CREATE Collection

DROP Collection

ALTER Collection

READ Collection

LOAD Collection

RELEASE Collection

COMPACT Collection

INSERT Collection

DELETE Collection

Index-related operations are included in ALTER privilege, like building, dropping index.

Default Roles

There are two default roles: admin, public.

Role admin have ALL the privilege. Role public only has READ privileges.and LOAD

APIs

For every API, parameter tenant is mandatory for avoiding loading too much data to memory.

1Create a role

func CreateRole(roleName string) bool

Only root user can create roles. Role name cannot be "admin" or "public".

2Grant & revoke privileges

func GrantPrivilege(privilege string, resourceType string, resourceName string, principalName string,
principalType string) bool

func RevokePrivilege(privilege string, resourceType string, resourceName string, principalName string,
principalType string) bool

Only root user can grant & revoke privileges.

3List grants for a user/role

func PrincipalGrantList(principalName string, principalType string, resourceType string, resourceName string) []
PrincipalGrant

Output structure:

PrincipalName PrincipalType Privilege ResourceType ResourceName

Alice USER INSERT Collection tbl_1

Users can only query the grants for himself. And only root user can query grants for a role.

4Show the role grants

func RoleGrantList(roleName string) []RoleGrant

Output:

Role Privilege ResourceType ResourceName

role_a INSERT COLLECTION tbl_1

role_a SELECT COLLECTION tbl_1

role_a CREATE DATABASE db_1

role_a DROP DATABASE db_1

The API may query multiple tables depending on how many resource types milvus supporting.

Only root user can use the api.

5Manipulate role membership, includes adding/ users to a roleremoving

func AddUserToRole(userName, roleName string) bool

func RemoveUserFromRole(userName, roleName string) bool

Only root user can manipulate role membership.

6Drop a role

func DropRole(roleName string) bool

A role cannot be dropped if it has privileges. Use REVOKE API to remove privileges.

Only root user can drop roles.

7List roles

func RoleList() []Role

Output:

RoleName

admin

role_a

Only root user can use the api.

8List role memberships

func RoleMembershipList(roleName string) []RoleMembership

Output:

RoleName UserName

admin root

Only root user can use the api.

9Show users

func UserList() []User

Output:

UserName Roles

root [admin, role_a]

Only root user can use the api.

10List roles of a user

func rolesOfUser(username string) []string

11List all types of resources

func ResourceList() []Resource

Output:

Resource

COLLECTION

DATABASE

1.

2.
3.

4.

12List all privileges

func PrivilegeListOfResource(resourceType string) []Privilege

Output:

ResourceType Privilege

COLLECTION INSERT

COLLECTION SELECT

13Delete User

The root user cannot be deleted.

Other Notices

There will be initialization program for presetting users, resource types, privileges. Before the Milvus go to service, they are inserted into the meta
table.
The root user is the only user that has privileges to create/drop/grant/revoke users and privileges.
In , basic auth is taking effect if there are any existing users. Since root user is created by default once Milvus service starts, it will MEP-27
introduce a toggle to indicate whether the authentication is turned on.
Using for role-based privileges check.Casbin

Test Plan

Testing all the APIs listed above.

https://wiki.lfaidata.foundation/display/MIL/MEP+27+--+Support+Basic+Authentication
https://github.com/casbin/casbin

	MEP 29 -- Support Role-Based Access Control

