MEP 8 -- Add metrics for proxy

Current state: Under Discussion

ISSUE: #5955 #6249 #7091 #7114 #7139 #7161 #7162
PRs: #5987 #7113 #7137 #7157

Keywords: et ri ¢ Pr oxy

Released:

Summary

Proxy will provide an interface for users to show some important metrics information of Milvus.

Motivation

When users use the Milvus, they may want to know exactly how Milvus is running. Now we already have integrated prometheus into our metrics system,
users can use prometheus to monitor the Milvus. We also have milvus-insight project to interact with Milvus, though prometheus have already provided the
metrics interface, it's not easy for mi | vus- i nsi ght to use them and visualize them (If we do so, it seems that we are going to implement a front-end of
parsing prometheus metrics). So as the access layer of Milvus, Proxy should provide an interface for users to show some important metrics information of
Milvus.

Public Interfaces

This MEP will add a new interface below:

service MIvusService {
rpc GetMetrics(GetMetricsRequest) returns (GetMetricsResponse) {}

}

message Get MetricsRequest {
/'l request is the jsonic format string, in this way, we can al so extend request easier,
string request = 1,

}

message Cet Metri cResponse {
conmon. Status status = 1;
/'l response is the jsonic format string, in this way, we can al so extend response easier
string response = 2;

}

I will describe how this interface should be used later in Design Details.

Design Details

As #6249 mentioned, users may want to know below metrics:

- System info

® system version
® nodes info

© node name
© hardware info

" cpuinfo
" memory info
= capacity info
© connection info (which node connect to which node)
O created time
O updated time
® system configurations

- System statistics

® hardware statistics(all and per node)

© cpu infolusage

O storage capacity/usage

© node memory capacity/usage
® loaded collections/partitions

https://github.com/milvus-io/milvus/issues/5955
https://github.com/milvus-io/milvus/issues/6249
https://github.com/milvus-io/milvus/issues/7091
https://github.com/milvus-io/milvus/issues/7114
https://github.com/milvus-io/milvus/issues/7139
https://github.com/milvus-io/milvus/issues/7161
https://github.com/milvus-io/milvus/issues/7162
https://github.com/milvus-io/milvus/pull/5987
https://github.com/milvus-io/milvus/pull/7113
https://github.com/milvus-io/milvus/pull/7137
https://github.com/milvus-io/milvus/pull/7157
https://github.com/milvus-io/milvus-insight
https://github.com/milvus-io/milvus/issues/6249

© name

© loaded time
collections/partitions count
indexes count
QPS
latency

- Logs

® search/query logs

O ip/time/query parameters
® system Logs

o system up/down logs

How Proxy can get these metrics?

Most of metrics listed above can be reported directly, for example, hardware information, system configurations and etc.

For some meta-related metrics, such as loaded collections/partitions, Proxy can get these information from other components also.
There are two parts we need to discuss in detail:

® Event Log Metrics
® Milvus Connection Topology

Event Log Metrics

A way to handle event log metrics such as dd/dm/dq operations is to use message stream. Other components as the producers will continously produce
event logs to this stream, then Proxy as the consumer can read all event logs from stream and sort them with timestamp order. In this way, we need to
consider the retention time of event log, as Milvus keeps running, event logs will become more and larger, Proxy shouldn't hold so many event logs, so a
clean-up background thread is required to clean the logs peridically. Of course, we can also choose to persistent the event logs and then users can
specific the timestamp section of event logs. There are many cloud-native logging systems, such as fluentd, etc.

Milvus Connection Topology
| have two ideas about implementing this.

Plan 1 : Get topology information from other components. IndexCoord, QueryCoord, DataCoord should also provide an interface for Proxy to get metrics
including node connection information. Since all coordinators in Milvus can manage their all related nodes, they can easily how many nodes connected to
them and their nodes' hardware information.

® Pros: In fact, this interface for other components is required. Some meta-related metrics can only be reported by specific components.
® Cons: Every components will have the same logic to handle connection topology. If we have other coordinators later, they should also implement
them. It will take a lot of time to implement and test.

Plan 2: Register the topology information into etcd. When nodes connect to coordinator, register their information too. Now we have an awsome
encapsulation when nodes connect to others using Sessi on implemented by @qingxiang.chen. We can also encapsulate this operation to Sessi on.

® Pros: Reduce the duplicated work that all coordinators implement the same logic.
® Cons:
1. Introduce the dependency between etcd and Proxy.
2. Not easy to get resource usage of nodes, such as memory usage, cpu usage and etc.

Detailed Implementation of Plan 1

Every component in Milvus should have an interface GetMetrics to expose their metrics. As the user access layer, Proxy connects to other coordinators
directly, such as RootCoord, DataCoord, QueryCoord and IndexCoord. Taking QueryCoord as an example, how could Proxy get topology metrics between
QueryCoord and Query Nodes? The answer is that Proxy get these metrics from QueryCoord. QueryCoord manages all the Query Nodes, so the metrics
of Query Nodes can be easily reported to QueryCoord and then QueryCoord an summary these metrics to Proxy.

We should add GetMetrics interface to rpc service of coordinator and related node:

service QueryCoord {
rpc GetMetrics(mlvus. Get MetricsRequest) returns (mlvus. Get Metri csResponse) {}

}

service QueryNode {
rpc GetMetrics(mlvus. Get MetricsRequest) returns (mlvus. Get Metri csResponse) {}

}

How to use Get Metri cs interface?

The r equest and r esponse are both of jsonic format string. Below are some examples, for some special response, | will explain how they are organized.

System Info

request:

"metric_type": "system.info"

}

response:

repsonse

{
"nodes_info": [
{
"identifier": 1, // unique in the list of nodes_info
"nane": "root coordinator",
"hardware_i nfo": {
"ip": "192.168.1.1",
"cpu_core_count": 2,
"cpu_core_usage": "10%,
"menory": "13124124",
"menory_usage": "234123",
"di sk": "234123",
"di sk_usage": "123123",
b
"system.info": {
"systemversion": "rc2 a3c662c7b",
"depl oy_nobde": "cluster",
b
"system configurations": {
"maxPartitionNun': 4096,
"tinmeTicklnterval": 200
b
"created_time": "2021-04-13 08:41: 34. 51+00",
"updated_time": "2021-04-13 08:41: 34. 51+00",
"type": "coordinator",
"connected": []

"identifier": 2,

"nane": "data coordi nator",

"hardware_i nfo": {
"ip": "192.168.1.1",
"cpu_core_count": 2,
"cpu_core_usage": "10%,
"menory": "13124124",
"menory_usage": "234123",
"di sk": "234123",
"di sk_usage": "123123",

}

ysteminfo": {
"systemversion": "rc2 a3c662c7b",

"depl oy_node": "cluster",

b

"systemconfigurations": {
"maxPartitionNunt: 4096,
"timeTicklnterval": 200

H

“created_time": "2021-04-13 08:41:34.51+00",

"updated_time": "2021-04-13 08:41: 34.51+00",

"type": "coordinator",
"connected": [
{
"parent": 1,
"met hod": "manage"
}
]
H
{
"identifier": 3,
"name": "proxy",
"hardware_i nfo": {
"ip": "192.168.1.1",
"cpu_core_count": 2,
"cpu_core_usage": "10%,
"menory": "13124124",
"menory_usage": "234123",
"di sk": "234123",
"di sk_usage": "123123",
H
"systeminfo": {
"systemversion": "rc2 a3c662c7b",
"depl oy_nopde": "cluster",
H
"system configurations": {
"maxPartitionNun': 4096,
"tinmeTicklnterval": 200
H
"created_time": "2021-04-13 08:41: 34. 51+00",
"updated_time": "2021-04-13 08:41: 34. 51+00",
"type": "proxy",
"connected": [
{
"parent": 1,
"met hod": "notification"
H
{
"parent": 2,
"met hod": "notification"
}
]
H
{
"identifier": 4,
"nane": "data node 1",
"hardware_i nfo": {
"ip": "192.168.1.1",
"cpu_core_count": 2,
"cpu_core_usage": "10%,
"menory": "13124124",
"menory_usage": "234123",
"di sk": "234123",
"di sk_usage": "123123",
o
"system.info": {
"systemversion": "rc2 a3c662c7b",
"depl oy_node": "cluster",
o
"systemconfigurations": {
"maxPartitionNunt: 4096,
"tinmeTicklnterval": 200
o

"created_time": "2021-04-13 08:41: 34. 51+00",

"updated_time": "2021-04-13 08:41: 34.51+00",
"type": "data node",
"connected": [
{
"parent": 2,
"met hod": "manage"

"identifier": 5,
"nanme": "data node 2",
"hardware_i nfo": {
"ip": "192.168.1.1",
"cpu_core_count": 2,
"cpu_core_usage": "10%,
"menory": "13124124",
"menory_usage": "234123",
"di sk": "234123",
"di sk_usage": "123123",
},
"system.info": {
"systemversion": "rc2 a3c662c7b",
"depl oy_npde": "cluster",
H
"system configurations": {
"maxPartitionNuni: 4096,
"timeTicklnterval": 200
b
"created_time": "2021-04-13 08:41:34.51+00",
"updated_time": "2021-04-13 08:41: 34. 51+00",
"type": "data node",
"connected": [
{
"parent": 2,
"nmet hod": "manage"

In order to show the connection topology of Milvus, we have the nodes_i nf o in response. nodes_i nf o is a list and every item in list indicates a node in
Milvus cluster. Every item has a identifier which is unique in nodes_i nf o. The identifier can be used in connect ed content, for example, proxy has
connected to root coordinator and data coordinator, so the connect ed contentis [1, 2], 1 is the identifier of root coordinator, 2 is the identifier of data
coordinator.

System Statistics
{
}

response:

"metric_type": "systemstatistics"”

"hardware_statistics": [

{
"identifier": 1, /1 unique in the list of hardware_statistics
"nane": "root coordinator",
"har dwar e_usage": {
"cpu":
"type": "Intel (R} Core(TM i7-8700 CPU @ 3. 20GH",
"usage": 6
e
"menmory": {
"total ": 320000, /'l in mega bytes
"usage": 120000, /1 in nmega bytes
}
}
}
11

"ioaded_collections": [
"nane": "col | 1"
"| oaded_tinme": "2021/07/05 11:13:44.372 +08: 00"
"| oaded_partitions": [

"nane": "partitionl",
"| oaded_tinme": "2021/07/05 11:13:44.372 +08: 00"

},
I
|
},
Il
"&ollection_count": 3

"partitions_count": [

"coll1": 2,

——

/
I
"indexes_count": [
{

"coll1": 2,

H

/1
1.
"gqps": 10096

"latency": 0.1

}

System Event Log

{
"metric_type": "system.| og"
}
response:
{
ndd
"create collection 1 at tsl",
"create collection 2 at ts2"
1,
ndnt [
"insert 20 records into collection 1",
"insert 30 records into collection 2"
1.
"dgt
"search on collection 1, ng: 10, topk = 5"
"search on collection 2, ng: 10, topk = 5"
|
}
Test Plan

test script written with pymi | vus:

#!/usr/ bin/env python
i mport ujson
from pym | vus. grpc_gen inport mlvus_pb2 as mlvus_types

ip="127.0.0.1"

port = "19530"

if __name__ =="__nmain__":
client = MIvus(host=ip, port=port)

with client._connection() as handler:
system.info_req = ujson.dumps({"netric_type": "system.info"})
req = mlvus_types. Get Metri csRequest (request =system i nfo_req)
resp = handl er._stub. Get Metrics(req, wait_for_ready=True, tineout=None)
print(resp)

system statistics_req = ujson.dunps({"netric_type": "systemstatistics"})
req = milvus_types. Get Metri csRequest (request =system statistics_req)

resp = handl er._stub. Get Metrics(req, wait_for_ready=True, tineout=None)
print(resp)

system | ogs_req = ujson.dunps({"netric_type": "systemlogs"})

req = milvus_types. Get Metri csRequest (request =system | ogs_req)

resp = handl er._stub. Get Metrics(req, wait_for_ready=True, tineout=None)
print(resp)

client.close()

	MEP 8 -- Add metrics for proxy

