
Repository with history
DACI: How to implement a repository with
history?

Status RELEASED

Impact HIGH

Driver Chris Grote

Approver Mandy Chessell

Contributors Graham Wallis

David Radley

Informed

Due date

Outcome Progressed option 2 to a release state

Tips and info

Background

A common scenario we come across with almost all metadata repositories we have seen is that they lack the ability to store historical information
about metadata and respond to point-in-time inquiries. While Egeria's type system and APIs have been built from the beginning to support such
history, we have not yet implemented a backend storage option that implements history.

Considering this comes up frequently as a common need, even to augment existing metadata repositories, providing such a historical store for
metadata could be a somewhat narrow but nonetheless extremely common adoption point for Egeria.

Current state

We are currently considering implementation options for an initial approach to such a repository.

Data for decision support

Identification of potential technologies to use as the backing store for such a repository.

Options considered

Option 1: bi-temporal RDBMS Option 2: bi-temporal graph Option 3:
search
index

Description Using a bi-temporal relational database like DB2 Using a bi-temporal graph store like Crux Using a
search index
like Elastic

Rollout
plan

Start with some initial proof of concept activities like building some of the
basic methods in a repository connector.

Leaving as
an alternative
approach that
was
suggested,
but no further
details
available.

Recommendations

We agreed to examine the potential of Option 2 in more
detail, and have now ultimately taken that approach to a
released state.

https://wiki.lfaidata.foundation/display/~cgrote
https://wiki.lfaidata.foundation/display/~mandychessell
https://wiki.lfaidata.foundation/display/~grahamwallis
https://wiki.lfaidata.foundation/display/~davidradl
https://github.com/juxt/crux
http://elastic.co

Pros and
cons

Risks

Estimated
cost and
effort

FAQ

Q1.

A1.

References

Relevance Link

Original GitHub issue https://github.com/odpi/egeria/issues/2545

Discussion with Crux team 2020-11-27 Meeting notes

Follow-up action items

Native

Handles historical information natively
at the storage layer, so should be
simpler to implement point-in-time
inquiry.

New approach

Takes a new approach to a backing
store (relational) compared to our
existing implementations (graph-based)

Commercial

We are unaware of any open source,
native bi-temporal RDBMS, so this
would put a dependency on licensed
commercial software.

Schema

Requires a fixed schema, which raises
questions about how to both handle
efficient queries (not storing things as
unqueryable blobs) but also manage
history when the type system itself
(schema?) may have changed over the
course of that history (ie. deprecated
attributes and types)

Native

Handles historical information natively at the storage layer, so
should be simpler to implement point-in-time inquiry.

Similar to existing

Close alignment with our current repository approaches that are
more graph-focused than relational.

Embedded option

Provides a simple option to run in an embedded capacity, which
could be useful for demonstration purposes (not requiring
additional infrastructure and components).

Pluggable backends

Implemented using pluggable characteristics for its own
backends, including both open source and commercial options.

Schemaless

It sounds like each document in Crux is essentially schema-less
(tuples / triples-based), so it may be feasible to store multiple
versions of a type across the history of a given instance of

metadata

Scalability

The resource requirements that might be necessary for a "true
production" rollout are unclear, or the volume to which it can
scale. (We heard mention of "16 TB" (sounds plenty) but also
"10 million triples" (with history, and one triple per attribute

 – from subsequent value, per instance, this sounds small?)
conversations we confirmed that this is 10 triples rather billion
than million, alleviating our immediate concerns.

https://github.com/odpi/egeria/issues/2545
https://wiki.lfaidata.foundation/display/EG/2020-11-27+Meeting+notes

Learn more: https://www.atlassian.com/team-playbook/plays/daci

Copyright © 2016 Atlassian

blocked URL
This work is licensed under a Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License.

https://www.atlassian.com/team-playbook/plays/daci
https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Repository with history

