Implement an Open Metadata Repository Connector

Eager to integrate your own metadata repository into the Egeria ecosystem, but not sure where to start? This article walks through how to do just that:
implementing an open metadata repository connector according to the standards of ODPi Egeria.

Integrating a metadata repository into the Open Metadata ecosystem involves coding an Open Metadata Collection Store Connector. These are Open
Connector Framework (OCF) connectors that define how to connect to and interact with a metadata repository.

Open Metadata Collection Store Connectors are typically comprised of two parts:

1. Therepository connector: which provides a standard repository interface that communicates using the Open Metadata Repository Services
(OMRS) API and payloads.

2. The event mapper connector: which captures events when metadata has changed in the metadata repository and passes these along to the
Open Metadata Repository Services (OMRS) cohort.

The event mapper connector often calls the repository connector: to translate the repository-native events into Egeria’'s OMRS events.

While various patterns can be used to implement these, perhaps the simplest and most loosely-coupled is the adapter. The adapter approach wraps the
proprietary interface(s) of the metadata repository to translate these into OMRS calls and payloads. In this way, the metadata repository can communicate
as if it were an open metadata repository.

The remainder of this article will walkthrough:

® implementing such an adapter pattern as a connector, and
® using the resulting connector through the proxy capabilities provided by the core of Egeria.

1. Design
the
connector o
2. Setup —>
the
connecto
r project

3. Impleme
nt the
repositor

connector
4. Package
your your-org/your-connector (source)
connector
5. Startup
the
OMAG
Server
Platform
with your
connector

Admin REST API calls

configure cohort event bus °

configure connector proxy
6. Test

configure event mapper o
your
connecto mvn clean install startup server instance
r's basllc k J
operations
mapper a
8. Test
r's]]
conforma odpi/egeria

7. Add an your-connector-package.jar
OMRS REST API calls
your
nce

event
connecto LOADER_PATH getEntityDetail()

getEntityRelationships()

Design the connector

https://egeria.odpi.org/open-metadata-implementation/frameworks/open-connector-framework/
https://egeria.odpi.org/open-metadata-implementation/frameworks/open-connector-framework/
https://egeria.odpi.org/open-metadata-publication/website/open-metadata-integration-patterns/
https://egeria.odpi.org/open-metadata-publication/website/open-metadata-integration-patterns/adapter-integration-pattern.html
https://egeria.odpi.org/open-metadata-publication/website/open-metadata-integration-patterns/adapter-integration-pattern.html

Before delving straight into the implementation of a connector, you really need to
start with a level of design work. Fundamentally this will involve two steps:

> ﬁ 1. Mapping to the meta-model concepts of Egeria: in particular Entities, Classif

ications and Relationships.
2. Mapping to the actual open metadata types of Egeria: e.g. d ossaryTerm G
| ossar yCat egory, Rel ati onal Col umm, and so on.

Map to the Egeria meta-model concepts

The best place to start with the design work is to understand the meta-model of Egeria itself. Consider how your metadata repository will map to the
fundamental Egeria metadata concepts: Entities, Classifications, and Relationships.

When implementing the code described in the remainder of this article, you'll be making use of and mapping to these fundamental Egeria concepts.
Therefore, it is well worth your time now understanding them in some detail. This is before even considering specific instances of these types like G ossar
yTer mor G ossar yCat egory.

Meta-model mapping may be quite a straightforward conceptual mapping for some repositories. For example, Apache Atlas has the same concepts of
Entities, Classifications and Relationships all as first-class objects.

On the other hand, not all repositories do. For example, IBM Information Governance Catalog (IGC) has Entities, and a level of Relationships and
Classifications — but the latter two are not really first-class objects (i.e. properties and values cannot exist on them).

Therefore you may need to consider

* whether to attempt to support these constructs in your mappings, and
® if so, how to prescriptively represent them (if they are not first-class objects).

For example, in the implementation of the sample IGC connector we suggest using categories with specific names in IGC to represent certain
classifications. Additionally, one of the reasons for implementing a read-only connector is that we can still handle relationships without any properties: by
simply having the properties of any Egeria relationships we translate from IGC all be empty.

Map to the Egeria open metadata types

Once you have some idea for how to handle the mapping to the meta-model concepts, check your thinking by working through a few examples. Pick a few
of the open metadata types and work out on paper how they map to your metadata repository’s pre-existing model. Common areas to do this would be e.g.
d ossaryTerm d ossar yCat egor y for glossary (business vocabulary) content; Rel at i onal Col umm, etc for relational database structures; and so on.

Most of these should be fairly straightforward after you have an approach for mapping to the fundamental meta-model concepts.
Then you'll also want to decide how to handle any differences in types between the open metadata types and your repository’s pre-existing types:

® Can your metadata repository be extended with new types?

® Can your metadata repository’s pre-existing types be extended with new properties?

® What impacts might be caused to repositories (and metadata instances) that already exist if you add to or extend the types?
® What impacts will this have on your Ul or how users interact with these extensions?

Your answers to these gquestions will inevitably depend on your specific metadata repository, but should help you decide on what approach you'd like to
take:

Ignore any open metadata types that do not map to your pre-existing types.

Add any Egeria open metadata types that do not exist in your repository.

Add Egeria open metadata properties to your pre-existing types when Egeria has additional properties that do not yet exist in your type(s).
Implement a read-only connection (possibly with some hard-coding of property values) for types that are partially map-able, but not easily
extended to support the full set of properties defined on the open metadata type.

® and so on.

Setup the connector project

Implementing an adapter can be greatly accelerated by using the pre-built base classes of
your-org/your-connector (source) Egeria. Therefore building a connector using Java is likely the easiest way to start.

This requires an appropriate build environment comprised of both Java (minimally v1.8) and
Maven.

Egeria has been designed to allow connectors to be developed in projects independently
from the core itself. Some examples have already been implemented, which could provide
a useful reference point as you proceed through this walkthrough:

® asample IBM InfoSphere Information Governance Catalog Repository Connector
® asample Apache Atlas Repository Connector

https://egeria.odpi.org/open-metadata-implementation/repository-services/docs/metadata-meta-model.html
https://egeria.odpi.org/open-metadata-publication/website/open-metadata-types/
https://egeria.odpi.org/open-metadata-implementation/repository-services/docs/metadata-meta-model.html
https://atlas.apache.org/
https://www.ibm.com/marketplace/information-governance-catalog
https://github.com/odpi/egeria-connector-ibm-information-server
https://github.com/odpi/egeria-connector-ibm-information-server
https://github.com/odpi/egeria-connector-apache-atlas

Start by defining a new Maven project in your IDE of choice. In the root-level POM be sure to include the following:

<properties>
<open- net adat a. ver si on>2. 5- SNAPSHOT</ open- net adat a. ver si on>
</ properties>
<dependenci es>
<dependency>
<gr oupl d>or g. odpi . egeri a</ gr oupl d>
<artifactld>repository-services-apis</artifactld>
<ver si on>${ open- et adat a. ver si on} </ ver si on>
<scope>conpi | e</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. odpi . egeri a</ gr oupl d>
<artifactld>open-connector-franework</artifactld>
<ver si on>%${ open- et adat a. ver si on} </ ver si on>
<scope>conpi | e</ scope>
</ dependency>
</ dependenci es>

Naturally change the version to whichever version of Egeria you'd like to build against. The dependencies listed ensure you'l have the necessary portion of
Egeria to build your connector against.

Implement the repository connector

. The repository connector exposes the ability to search, query, create, update and delete
yc:-ur—argfyc:-ur—connect@r (source) metadata in an existing metadata repository. As such, it will be the core of your adapter.

You can start to build this within your new project by creating a new Maven module called
something like adapt er .
repository connector

Within this adapt er module implement the following:

Implement an OMRSRepositoryConnectorProvider

Start by writing an OVRSReposi t or yConnect or Pr ovi der specific to your connector, which extends OVRSReposi t or yConnect or Pr ovi der Base.
The connector provider is a factory for its corresponding connector. Much of the logic needed is coded in the base class, and therefore your
implementation really only involves defining the connector class and setting this in the constructor.

For example, the following illustrates this for the Apache Atlas Repository Connector:

https://github.com/odpi/egeria-connector-apache-atlas

package org. odpi . egeri a. connect ors. apache. atl as. reposi t oryconnector;

i nport org. odpi.opennet adat a. f r amewor ks. connect or s. properti es. beans. Connect or Type;
i nport org. odpi . opennet adat a. r eposi t oryservi ces. connect ors. st ores. net adat acol | ecti onst ore. reposi t oryconnect or.
OVRSReposi t or yConnect or Pr ovi der Base;

public class ApacheAt| asOVRSReposi t or yConnect or Provi der ext ends OVRSReposi t or yConnect or Pr ovi der Base {

static final String connectorTypeGUI D = "7b200ca2- 655b-4106-917b- abddf 2ec3aa4";

static final String connectorTypeName = "OVRS Apache Atlas Repository Connector”;

static final String connectorTypeDescription = "OVRS Apache Atlas Repository Connector that processes
events fromthe Apache Atlas repository store.";

publ i c ApacheAt| asOVRSReposi t or yConnect or Provi der () {
Cl ass connectord ass = ApacheAt| asOVRSReposi t or yConnect or. cl ass;
super . set Connect or 0 assNare(connect or G ass. get Narme()) ;
Connect or Type connector Type = new Connect or Type();
connect or Type. set Type(Connect or Type. get Connect or TypeType());
connect or Type. set GJI D(connect or TypeGUI D) ;
connect or Type. set Qual i fi edName(connect or TypeNane) ;
connect or Type. set Di spl ayNane(connect or TypeNane) ;
connect or Type. set Descri pti on(connect or TypeDescri pti on);
connect or Type. set Connect or Provi der C assNane(t hi s. get C ass(). get Name());
super . connect or TypeBean = connect or Type;

Note that you'll need to define a unique GUID for the connector type, and a meaningful name and description. Really all you then need to implement is the
constructor, which can largely be a copy / paste for most adapt er s. Just remember to change the connect or d ass to your own, which you'll implement
in the next step (below).

Implement an OMRSRepositoryConnector

Next, write an OVMRSReposi t or yConnect or specific to your connector, which extends OVRSReposi t or yConnect or . This defines the logic to connect
to and disconnect from your metadata repository. As such the main logic of this class will be implemented by:

® OQverriding thei ni ti al i ze() method to define any logic for initializing the connection: for example, connecting to an underlying database,
starting a REST API session, etc.

® Overriding the set Met adat aCol | ecti onl d() method to create an OVRSMet adat aCol | ect i on for your repository (see next step below).

® Qverriding the di sconnect () method to properly cleanup / close such resources.

Whenever possible, it makes sense to try to re-use any existing client library that might exist for your repository. For example, Apache Atlas provides a
client through Maven that we can use directly. Re-using it saves us from needing to implement and maintain various beans for the (de)serialization of
REST API calls.

The following illustrates the start of such an implementation for the Apache Atlas Repository Connector:

https://github.com/odpi/egeria-connector-apache-atlas

package org. odpi . egeri a. connect ors. apache. atl as. reposi t oryconnector;
import org.apache. atlas. AtlasdientV2;
public class ApacheAt| asOVRSReposi t oryConnect or extends OVRSRepositoryConnector {

private String url;
private AtlasCientV2 atlasCient;
private bool ean successful Init = false;

publ i c ApacheAt| asOVRSReposi t oryConnector () { }

@verride
public void initialize(String connect or | nst ancel d,
Connecti onProperties connectionProperties) {
super.initialize(connectorlnstanceld, connectionProperties);

final String nethodName = "initialize";

/'l Retrieve connection details

Endpoi nt Properti es endpoi nt Properties = connectionProperties. getEndpoint();

/1 ... check for null and handle ...

this.url = endpointProperties.getProtocol () + "://" + endpoi ntProperties.get Address();
String username = connectionProperties.getUserld();

String password = connecti onProperties. getd earPassword();

this.atlasOient = new AtlasCientV2(new String[]{ this.url }, new String[]{ usernanme, password });

/] Test REST APl connection by attenpting to retrieve types list
try {
Atl asTypesDef atlasTypes = atlasCient.getAl | TypeDefs(new SearchFilter());
successfullnit = (atlasTypes != null && atlasTypes. hasEntityDef("Referenceable"));
} catch (AtlasServi ceException e) {
log.error("Unable to retrieve types from Apache Atlas.", e);

}

if (!successfullnit) {
ApacheAt | asOVRSEr r or Code error Code = ApacheAt | asOVRSEr r or Code. REST_CLI ENT_FAI LURE;
String errorMessage = errorCode. get Error Messagel d() + error Code. get For matt edError Message(this.url);
t hrow new OVRSRunt i neExcepti on(
error Code. get HTTPEr r or Code(),
this.getd ass().getName(),
met hodNane,
error Message,
error Code. get Syst emAction(),
error Code. get User Acti on()

}

@verride
public void setMetadataCol |l ectionld(String netadataCollectionld) {
this. metadat aCol | ectionld = et adat aCol | ecti onl d;
if (successfullnit) {
met adat aCol | ecti on = new ApacheAt | asOVRSMet adat aCol | ecti on(thi s,
server Nane,
reposi t or yHel per,
reposi toryVal i dator,
net adat aCol | ectionl d);

This has been abbreviated from the actual class for simplicity; however, note that as part of the i ni ti al i ze() it may make sense to test out the
parameters received for configuring the connection, to make sure that a connection to your repository can actually be established before proceeding any
further.

(This is also used in this example to setup a flag successf ul | ni t to indicate whether connectivity was possible, so that if it was not we do not proceed
any further with setting up the metadata collection and we allow the connector to fail immediately, with a meaningful error.)

You may want to wrap the metadata repository client's methods with your own methods in this class as well. Generally think of this class as “speaking the
language” of your proprietary metadata repository, while the next class “speaks” Egeria.

Implement an OMRSMetadataCollection

Finally, write an OVRSMet adat aCol | ect i on specific to your repository, which extends OVRSMet adat aCol | ect i onBase. This can grow to be quite a
large class, with many methods, but is essential for the participation of your metadata repository in a broader cohort. In particular, it is heavily leveraged by
Egeria’s Enterprise Connector to federate actions against your metadata repository. As such, this is how your connector “speaks” Egeria (open metadata).

Ideally your implementation should override each of the methods defined in the base class. To get started:

1. Override the addTypeDef () method. For each TypeDef this method should either extend your metadata repository to include this TypeDef,
configure the mapping from your repository’s types to the open metadata types, or throw a TypeDef Not Suppor t edExcept i on. (For those that
are implemented it may be helpful to store these in a class member for comparison in the next step.)

2. Override the veri f yTypeDef () method, which can check the types you have implemented (above) conform to the open metadata TypeDef
received (ie. that all properties are available, of the same data type, etc), and that if none have yet been listed as implemented that f al se is
returned (this will cause addTypeDef () above to automatically be called).

3. Override the get Ent i t yDet ai | () method that retrieves an entity by its GUID.

Note that there are various options for implementing each of these. Which route to take will depend on the particulars of your specific metadata repository:

* In the sample IBM InfoSphere Information Governance Catalog Repository Connector the mappings are defined in code. This approach was used
because IGC does not have first-class Relationship or Classification objects. Therefore, some complex logic is needed in places to achieve an
appropriate mapping. Furthermore, if a user wants to extend the logic or mappings used for their particular implementation of IGC, this approach
allows complete flexibility to do so. (A developer simply needs to override the appropriate method(s) with custom logic.)

® The sample Apache Atlas Repository Connector illustrates a different approach. Because the TypeDefs are quite similar to those of Egeria, it is
easier to map more directly through configuration files. A generic set of classes can be implemented that use these configuration files to drive the
specifics of each mapping. In this case, simple JSON files were used to define the ont s name of a particular object or property and the
corresponding at | as entity / property name to which it should be mapped. While this allows for much more quickly adding new mappings for new
object types, it is far less flexible than the code-based approach used for IGC. (It is only capable of handling very simple mappings: anything
complex would either require the definition of a complicated configuration file or still resorting to code).

Once these minimal starting points are implemented, you should be able to configure the OMAG Server Platform as a proxy to your repository connector
by following the instructions in the next step.

Important: this will not necessarily be the end-state pattern you intend to use for your repository connector. Nonetheless, it can provide a quick way to
start testing its functionality.

This very basic, initial scaffold of an implementation allows:

® aconnection to be instantiated to your repository, and
® translation between your repository’s representation of metadata and the open metadata standard types.

Package your connector

To make your connector available to run within the OMAG Server Platform, you can
your—orgfymlr—connector (source) package it into a distributable . j ar file using another Maven module, something like di st r
i bution.

In this module’s POM file include your adapter module (by arti fact|d)asa
repository connector dependency, and consider using the maven- shade- pl ugi n to define just the necessary
components for your . j ar file. Since it should only ever be executed as part of an Egeria
OMAG Server Platform, your . j ar file does not need to re-include all of the underlying
Egeria dependencies.

mvn clean install

your-connector-package.jar

For example, in our Apache Atlas Repository Connector we only need to include the adapt er module itself and the base dependencies for Apache Atlas’s
Java client (all other dependencies like Egeria core itself, the Spring framework, etc will already be available through the Egeria OMAG Server Platform):

https://github.com/odpi/egeria-connector-ibm-information-server
https://github.com/odpi/egeria-connector-apache-atlas
https://github.com/odpi/egeria-connector-apache-atlas

<?xm version="1.0" encodi ng="UTF-8"?>
<project xm ns="http://nmaven. apache. or

g/ POM 4. 0. 0"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0. 0 http://maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >

<par ent >

<artifactl|d>egeria-connector-apache-atlas</artifactld>

<gr oupl d>or g. odpi . egeri a</ grou
<ver si on>1. 1- SNAPSHOT</ ver si on
</ par ent >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

pl d>
>

<artifactld>egeria-connector-apache-atl as- package</artifactld>

<dependenci es>
<dependency>
<gr oupl d>or g. odpi . egeri a</

groupl d>

<artifactld>egeria-connector-apache-atl as-adapter</artifactld>

<ver si on>${ open- net adat a. v
</ dependency>
</ dependenci es>

ersi on}</versi on>

ncl ude>or g. odpi . egeri a: egeri a- connect or - apache- at | as- adapt er </ i ncl ude>

atl as: atlas-client-comon</include>
atlas:atlas-client-vl</include>
atlas:atlas-client-v2</include>
atlas: atlas-intg</include>

hadoop: hadoop- aut h</i ncl ude>
hadoop: hadoop- common</ i ncl ude>

ncl ude>com fasterxni . jackson.jaxrs:jackson-jaxrs-base</incl ude>
ncl ude>com fast erxni . j ackson. j axrs: jackson-j axrs-json-provider</include>
ncl ude>com f ast er xni . j ackson. nodul e: j ackson- nodul e-j axb- annot at i ons<

ncl ude>com sun. j ersey: jersey-client</include>

ncl ude>com sun. j ersey: j ersey-core</incl ude>

ncl ude>com sun. j ersey: jersey-j son</incl ude>

ncl ude>com sun. jersey.contribs:jersey-multipart</include>
ncl ude>j avax. ws. rs: j sr311-api </ i ncl ude>

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!l d>maven-shade- pl ugi n</artifactld>
<ver si on>${ maven- shade. ver si on} </ ver si on>
<executions>
<execution>
<i d>assenbl e</i d>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
<configuration>
<artifactSet>
<i ncl udes>
<
<i ncl ude>or g. apache
<i ncl ude>or g. apache
<i ncl ude>or g. apache
<i ncl ude>or g. apache
<i ncl ude>or g. apache
<i ncl ude>or g. apache
<
<
<
/include>
<
<
<
<
<
</incl udes>
</artifactSet>
</ configurati on>
</ execut i on>
</ execut i ons>
</ pl ugi n>
</ pl ugi ns>
</ bui |l d>

</ proj ect >

Of course, you do not need to use the maven- shade- pl ugi n to accomplish such bundling: feel free to define a Maven assembly or other Maven

techniques

Building and packaging your connector should then be as simple as running the following from the root of your project tree:

nmvn clean install

Working out exactly which dependencies to include when you are using an external client like Apache Atlas’s can be a little bit tricky. Starting small will
inevitably result in various errors related to classes not being found: when building you'll see a list of all the classes considered by the shade plugin and
which are included and excluded. You can use this to make some educated guesses as to which may still need to be included if you are running into errors
about classes not being found. (Ideally you'll have a simple, single jar file / dependency you can directly include instead of needing to work through this,
but that won't always be the case.)

Again, since we will just be using this connector alongside the existing OMAG Server Platform, this avoids ending up with a . j ar file that includes the
entirety of the Egeria OMAG Server Platform (and its dependencies) in your connector . j ar — and instead allows your minimal . j ar to be loaded at
startup of the core OMAG Server Platform and configured through the REST calls covered in section 6.

Of course, if you intend to embed or otherwise implement your own server, the packaging mechanism will likely be different. However, as mentioned in the
previous step this should provide a quick and easy initial way of testing the functionality of the connector against the core of Egeria.

Startup the OMAG Server Platform with your connector

. Assuming you've built your connector .

j ar file using the approach outlined
above, you'll now have a . j ar file under
the di stri bution/target/ directory
of your project: for the Apache Atlas
example, this would be di st ri buti on
‘ /target/egeria-connector-

apache- at | as- package- 1. 1-
SNAPSHOT. j ar .

configure connector proxy

startup server instance ‘

your-connector-package.jar

LOADER_PATH

odpi/egeria

<@> IQEEE;ERIA OMAG Server Platform I

When starting up the OMAG Server Platform of Egeria, we need to point to this . j ar file using either the LOADER_PATH environment variable or a -
Dl oader . pat h= command-line argument to the server start command:

export LOADER PATH=..../distribution/target/egeria-connector-apache-atl as-package-1. 1- SNAPSHOT. j ar
java -jar server-chassis-spring-1.1- SNAPSHOT. j ar

or

java - Dl oader.path=..../distribution/target/egeria-connector-apache-atl as-package-1.1- SNAPSHOT. jar -jar server-
chassi s-spring-1. 1- SNAPSHOT. j ar

Either startup should ensure your connector is now available to the OMAG Server Platform to use for connecting to your metadata repository. You may
also want to setup the LOGG NG_LEVEL_ROOT environment variable to define a more granular logging level for your initial testing, e.g. export

LOGAE NG_LEVEL_ROOT=I NFObefore running the startup command above, to receive deeper information on the startup. (You can also setup a similar
variable to get even deeper information for just your portion of code by using your unique package name, e.g. export

LOGG NG LEVEL_ORG ODPl _EGERI A_CONNECTOR_X_Y_Z=DEBUG)

Then configure the OMAG Server Platform to use your connector. Note that the configuration and startup sequence is important.

Start with just the following:

Enable the OMAG Server as a repository proxy

Enable the OMAG Server as a repository proxy by specifying your canonical OVRSReposi t or yConnect or Provi der class name for the connect or Pro
vi der ={j avad assNane} parameter and POSTing to:

http://egeri ahost: 8080/ open- met adat a/ admi n- servi ces/ users/ nysel f/servers/test/| ocal -repository/node/repository-
proxy/ connecti on

For example, in our Apache Atlas example we would POST with a payload like the following:

{

"class": "Connection",
"connect or Type": {
"class": "ConnectorType",
"connect or Provi der 0 assNanme": "org. odpi.egeria.connectors. apache. atl as. reposi toryconnector.
ApacheAt | asOVRSReposi t or yConnect or Provi der "
H
"endpoint": {
"class": "Endpoint",
"address": "{{atlas_host}}:{{atlas_port}}",
"protocol": "http"
o
"userld": "{{atlas_user}}",
"cl earPassword": "{{atlas_password}}"

Start the server instance

Start the OMAG Server instance by POSTing to:

http://egeri ahost: 8080/ open- net adat a/ admi n- servi ces/ users/ nysel f/ servers/test/instance

During server startup you should then see various messages related to the metadata type registration process as the open metadata types are checked
against your repository. (These in turn call the methods you've implemented in your OVRSMet adat aCol | ecti on.) You might naturally need to iron out a
few bugs in those methods before proceeding further...

Test your connector's basic operations

Each time you change your connector
your-connector-package.jar code, you'll naturally want to re-build it (m
vn cl ean install)and restart the
OMAG Server Platform. If you are not
changing any of the configuration, you
can simply restart the OMAG Server
] Platform and re-run the POST to start the
. ! server instance (the last step above). If
odpi/egeria [getEntityRelationships()] you need to change something in the

configuration itself, it will be best to:
N\ [eor) I
<q}> EGERIA OMAG Server Platform [J 1. Stop the OMAG Server Platform.

LOADER_PATH [getEntityDetail()

2. Delete the configuration document

_ p, (a file named something like omag.
server.test.config).

3. Start the OMAG Server Platform
again.

4. Re-run both steps above (enabling
the OMAG Server as a proxy, and
starting the instance).

From there you can continue to override
other methods of the OVRSMet adat aCol
| ecti onBase class to implement the
other metadata functionality for
searching, updating and deleting as well
as retrieving other instances of metadata
like relationships. Most of these methods
can be directly invoked (and therefore
tested) using the REST API endpoints of
the OMAG server.

A logical order of implementation might be:

Read operations

getEntitySummary()

... which you can test through GET to:

http://egeriahost: 8080/ servers/test/open-netadatalrepository-services/users/nysel f/instances/entity/
{{guidO Entity}}/sunmmary

getEntityDetail()

... which you can test through CET to:

http://egeri ahost: 8080/ servers/test/open-nmetadatalrepository-services/users/ nysel f/instances/entity/
{{guidO Entity}}

getRelationshipsForEntity()

... which you can test through PCOST to:

http://egeriahost: 8080/ servers/test/open-netadatalrepository-services/users/nysel f/instances/entity/
{{guidO Entity}}/rel ationshi ps

... with a payload like the following (to retrieve all relationships):

{
"class": "TypeLi m tedFi ndRequest",
"pageSi ze": 100

}

These are likely to require the most significant logic for any mappings / translations you're doing between the open metadata types and your own
repository. For example, with Apache Atlas these are where we translate between the Apache Atlas native types like At | asd ossar yTer mand its
representation in the Apache Atlas java client and the open metadata type G ossar yTer m and its representation through the standard OMRS interfaces.

Search operations

The other main area to then implement is searching, for example:

findEntitiesByProperty()

... which you can test through POST to:

http://egeri ahost: 8080/ servers/test/open-netadatalrepository-services/users/ nmyself/instances/entities/by-
property

... with a payload like the following (to find only those G ossar y Ter ns classified as Spi neCbj ect s and whose name also starts with Enpl):

{
"class": "EntityPropertyFi ndRequest",
"typeGQUI D': "0db3e6ec-f5ef - 4d75- ae38- b7ee6f déecOa"”,
"pageSi ze": 10,
"matchCriteria": "ALL",
"mat chProperties": {
"class": "lnstanceProperties",
"instanceProperties": {
"di spl ayNanme": {
"class": "PrimtivePropertyVal ue",
"instancePropertyCategory": "PRIMTIVE",
"primtiveDef Category": "OM PRI M TIVE_TYPE_STRI NG',
"primtivevalue": "\\QEnpl\\E. *"
}
}
o
"limtResultsByd assification": ["SpineQbject"]
}

findEntitiesByClassification()

... which you can test through POST to:

http://egeri ahost: 8080/ servers/test/open-metadatalrepository-services/users/ nysel f/instances/entities/by-
cl assi fication/ ContextDefinition

... with a payload like the following (to find only those G ossar yTer ns classified as Cont ext Def i ni t i ons where the scope of the context definition
contains | ocal — note to change the classification type you change the end of the URL path, above):

{
"class": "EntityPropertyFi ndRequest",
"typeGUI D': "0db3e6ec-f5ef - 4d75- ae38- b7ee6f déecOa",
"pageSi ze": 100,
"matchCl assificationCriteria": "ALL",
"mat chd assi ficationProperties": {
"class": "lnstanceProperties",
"instanceProperties": {
"scope": {
"class": "PrimtivePropertyVal ue",
"instancePropertyCategory": "PRIMTIVE",
"primtiveDef Category": "OM PRI M TIVE_TYPE_STRI NG',
"primtiveValue": "*local *"
}
}
}

findEntitiesByPropertyValue()

... which you can test through POST to:

http://egeri ahost: 8080/ servers/test/open-metadatalrepository-services/users/nysel f/instances/entities/by-
property-val ue?searchCriteria=. %®RAY%CQaddr ess¥%CE. %2A

... with a payload like the following (to find only those G ossar yTer ns that contain addr ess somewhere in one of their textual properties):

{
"class": "EntityPropertyFi ndRequest",
"typeGQU D': "0db3e6bec-f5ef - 4d75- ae38- b7ee6f d6ec0a",
"pageSi ze": 10
}
and so on.

You hopefully have access to a search API for your repository so that you can efficiently fulfil these requests. You want to avoid pulling back a large
portion of your metadata and having to loop through it in memory to find specific objects. Instead, push-down the search to your repository itself as much
as possible...

Once you have those working, it should be relatively easy to go back and fill in areas like the other TypeDef-related methods, to ensure your connector can
participate appropriately in a broader open metadata cohort.

Write operations

While the ordering above is necessary for all connectors, if you've decided to also implement write operations for your repository there are further methods
to override. These include:

® creation operations like addEnti ty,
® update operations like updat eEnt i t yProperti es,
® and reference copy-related operations like saveEnt i t yRef er enceCopy.

If you are only implementing a read-only connector, these methods can be left as-is and the base class will indicate they are not supported by your
connector.

Add an event mapper

. The event mapper connector enables
your-org/your-connector (source) Admin REST API calls events from an existing metadata

repository to distribute changes to

: ' metadata to the rest of the metadata
configure cohort event bus . | | repositories who are members of the
"""""""""""""""""""" same OMRS cohort. It is not a
mandatory component: as long as your
connector can “speak” Egeria through an
OVRSMet adat aCol | ecti on it can
participate in an open metadata cohort
via the Enterprise Connector. However, if
your metadata repository already has
mvn clean install [startup server instance] some k|r_1d of event or notification

mechanism, the event mapper can be an

\ /| efficient addition to participating in the
broader open metadata cohort.

‘ repository connector J

@
<
)
3
2
3
o
kel
°
@
2
Q
]
=}
=}
@
Q
Q
IS]
=

your-connector-package.jar

LOADER_PATH

ﬁ

odpi/egeria

<<1:"> IBE@E-}ERIA OMAG Server Platform

Within the same adapt er Maven module, perhaps under a new sub-package like . . . event mapper, implement the following:

Implement an OMRSRepositoryEventMapperProvider

Start by writing an OVRSReposi t or yEvent Mapper Pr ovi der specific to your connector, which extends OVRSReposi t or yConnect or Provi der Base.
The connector provider is a factory for its corresponding connector. Much of the logic needed is coded in the base class, and therefore your
implementation really only involves defining the connector class and setting this in the constructor.

For example, the following illustrates this for the Apache Atlas Repository Connector:

package org. odpi . egeri a. connect ors. apache. at | as. event napper ;

i nport org. odpi.opennet adat a. f r amewor ks. connect ors. properti es. beans. Connect or Type;
i nport org. odpi . opennet adat a. r eposi t oryservi ces. connect ors. st ores. net adat acol | ecti onst ore. reposi t oryconnect or.
OVRSReposi t or yConnect or Pr ovi der Base;

public class ApacheAt| asOVRSReposi t or yEvent Mapper Provi der ext ends OVRSReposi t or yConnect or Provi der Base {

static final String connectorTypeGU D = "daeca2f 1- 9d23- 46f 4- a380- 19a1b6943746";

static final String connectorTypeName = "OVRS Apache Atlas Event Mapper Connector";

static final String connectorTypeDescription = "OVRS Apache Atlas Event Mapper Connector that processes
events fromthe Apache Atlas repository store.";

publ i c ApacheAt | asOVRSReposi t or yEvent Mapper Provi der () {
Cl ass connectord ass = ApacheAt| asOVRSReposi t or yEvent Mapper. cl ass;
super . set Connect or 0 assName(connect or G ass. get Narme()) ;
Connect or Type connect or Type = new Connect or Type();
connect or Type. set Type(Connect or Type. get Connect or TypeType());
connect or Type. set GJI D(connect or TypeGUI D) ;
connect or Type. set Qual i fi edName(connect or TypeNane) ;
connect or Type. set Di spl ayNane(connect or TypeNane) ;
connect or Type. set Descri pti on(connect or TypeDescri pti on);
connect or Type. set Connect or Provi der Cl assNane(t hi s. get d ass(). get Nane());
super . set Connect or TypePr operti es(connect or Type) ;

Note that you'll need to define a unique GUID for the connector type, and a meaningful name and description. Really all you then need to implement is the
constructor, which can largely be a copy / paste for most adapters. Just remember to change the connect or d ass to your own, which you’ll implement in
the next step (below).

Implement an OMRSRepositoryEventMapper

Next, write an OVRSReposi t or yEvent Mapper specific to your connector, which extends OVRSReposi t or yEvent Mapper Base and implements Vi r t ua
| Connect or Ext ensi on and OpenMet adat aTopi cLi st ener . This defines the logic to pickup and process events or notifications from your repository
and produce corresponding OMRS events. As such the main logic of this class will be implemented by:

® Qverriding thei ni ti al i ze() method to define how you will initialize your event mapper. For example, this could be connecting to an existing
event bus for your repository, or some other mechanism through which events should be sourced.

® Overriding the st art () method to define how to startup the processing of such events.

® Implementthei nitial i zeEnmbeddedConnect or s() method to register as a listener to any OpenMet adat aTopi cConnect or s that are
passed as embedded connectors.

* Implement the pr ocessEvent () method to define how to process each event received from your repository’s event / notification mechanism.

The bulk of the logic in the event mapper should be called from this pr ocessEvent () method: defining how events that are received from your repository
are processed (translated) into OMRS events that deal with Entities, Classifications and Relationships.

Typically you would want to construct such instances by calling into your OVRSMet adat aCol | ect i on, ensuring you produce the same payloads of
information for these instances both through API connectivity and the events.

Once you have the appropriate OMRS object, you can make use of the methods provided by the r eposi t or yEvent Pr ocessor , configured by the base
class, to publish these to the cohort. For example:

® repositoryEvent Processor. processNewEntityEvent (...) to publish a new entity instance (EntityDetail)
® repositoryEvent Processor. processUpdat edRel ati onshi pEvent (...) to publish an updated relationship instance (Rel at i onshi p)
® andsoon

To add the event mapper configuration to the OMAG Server Platform configuration you started with above, add:

Configure the cohort event bus

https://github.com/odpi/egeria-connector-apache-atlas

This should be done first, before any of the other configuration steps above, by POSTing to:

http://egeri ahost: 8080/ open- net adat a/ adm n- servi ces/ users/ nysel f/ servers/test/event-bus?connect or Provi der =org.
odpi . opennet adat a. adapt er s. event bus. t opi c. kaf ka. Kaf kaOpenMet adat aTopi cProvi der &t opi cURLRoot =OVRSTopi ¢

... with a payload like the following:

{
"producer": {
"boot strap. servers": "kaf kahost : 9092"
H
“consuner": {
"boot strap. servers": "kaf kahost : 9092"
}
}

Configure the event mapper

This can be done nearly last, after all of the other configuration steps above but still before the start of the server instance. Specify your canonical OVRSRep
osi t or yEvent Mapper Provi der class name for the connect or Provi der ={j avaCd assNane} parameter and connection details to your repository’s
event source in the event Sour ce parameter by POSTing to:

http://egeri ahost: 8080/ open- net adat a/ adm n- servi ces/ users/ nysel f/ servers/test/| ocal -reposi tory/event - mapper-
details

For example, in our Apache Atlas example we would POST to:

http://egeri ahost: 8080/ open- net adat a/ adm n- servi ces/ users/ nysel f/ servers/test/| ocal -reposi tory/event - mapper-
det ai | s?connect or Provi der =or g. odpi . egeri a. connect or s. apache. at| as. event mapper.
ApacheAt | asOVRSReposi t or yEvent Mapper Provi der &vent Sour ce=at | ashost : 9027

Test your connector's conformance

Aside from the API-based testing you
your-org/your-connector (source) Admin REST API calls might do as part of the on—goingg y

L implementation of your OVRSMet adat aC
] ! ol | ecti on class, once you are in a

position where you have most of the
methods implemented it is a good idea to
test your connector against the Egeria
Conformance Suite.

{ repository connector

@
<
@
=}
2
3
o
k)
S
@
2
o
e}
>
>
@
s}
Q
o
=

This will provide guidance on what

features you may still need to implement

in order to conform to the open metadata

mvn clean install [startup server instance] standards, as_well as ensuring those you
have already implemented behave

\. /| appropriately to participate in an open

metadata cohort.

Once your connector conforms, you
should also then have the necessary
output to apply to use the ODPi Egeria
] Conformant mark.

your-connector-package.jar

LOADER_PATH [getEntityDetail()

odpi/egeria [

ANIED) I
<€}> EGERIA OMAG Server Platform

getEntityRelationships()]

(]

. J

‘.
'
'
'
'
1

https://github.com/odpi/egeria/blob/master/open-metadata-conformance-suite/docs
https://github.com/odpi/egeria/blob/master/open-metadata-conformance-suite/docs
https://www.odpi.org/projects/egeria/conformance
https://www.odpi.org/projects/egeria/conformance

Related articles

® How to find entities and relationships
® |Implement an Open Metadata Repository Connector

https://wiki.lfaidata.foundation/display/EG/How+to+find+entities+and+relationships

	Implement an Open Metadata Repository Connector

