Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
title200: The model's meta is returned successfully


HTTP ResponseValue
Header

Content-Type: application/json; charset=utf-8

Body

{
  "id": "string",
  "name": "string",
  "revision": "int",
  "format": {
    "name": "string", 
    "version": "string"
  },
  "algorithm": "string", // Artificial neural network | Decision trees | Support-vector machines | Regression analysis | Bayesian networks | Genetic algorithms | Proprietary
  "tags": ["string"],
  "dependency": "string",
  "creator": "string",
  "description": "string",
  "input": {
    "fields": [
      {
        "name": "string",
        "opType": "string",
        "dataType": "string",
        "taxonomy": "string",
        "example": "string",
        "allowMissing": "boolean",
        "description": "string"
      }, ...
    ],
    "$ref": "string"
  },
  "output": {
    "fields": [
      {
        "name": "string",
        "opType": "string",
        "dataType": "string",
        "taxonomy": "string",
        "example": "string",
        "allowMissing": "boolean",
        "description": "string"
      }, ...
    ],
    "$ref": "string"
  },
  "performance": {
    "metric": "string",
    "value": "float"
  },
  "rating": "int",
  "url": "string"
}

  • format.name: PMML, ONNX, or other formats to be confirmed
  • algorithm: Artificial neural network | Decision trees | Support-vector machines | Regression analysis | Bayesian networks | Genetic algorithms | Proprietary
  • tags: describe what this model is used for e.g. Agriculture | Banking | Computer vision | Credit-card fraud detection | Handwriting recognition | Insurance | Machine translation | Marketing | Natural language processing | Online advertising | Recommender systems | Sentiment analysis | Telecommunication | Time-series forecasting | etc.
  • opType: categorical | ordinal | continuous
  • dataType: string | integer | float | double | boolean | date | time | dateTime
  • $ref: reference to external schema for the format used
  • metric: based on model used, metric can be accuracy, precision, recall, ROC, AUC, Gini coefficient, Log loss, F1 score, MAE, MSE, etc.
  • url: link to the real model for download


Example:

Code Block
languagejs
firstline1
titleGET {prefix}/models/6d4b571a-80ca-41ef-bc67-b158f4352ad8
collapsetrue
{
    "id": "6d4b571a-80ca-41ef-bc67-b158f4352ad8",
    "name": "Model 1",
    "revision": 3,
    "format": { 
      "name": "PMML",
      "version": "4.3"
    },
    "algorithm": "Neural Network", 
    "tags": [
      "Anomaly detection",         
      "Banking"                    
    ],                              
    "dependency", "",
    "creator": "John Doe",
    "description": "This is a predictive model, refer to {input} and {output} for detailed format of each field, such as value range of a field, as well as possible predictions the model will gave. You may also refer to the example data here.",
    "input": {
      "fields": [
        {
          "name": "Account ID",
          "opType": "categorical",
          "dataType": "string",
          "taxonomy": "ID",
          "example": "account abc-001",
          "allowMissing": false,
          "description": "unique value"
        },
        {
          "name": "Account Balance",
          "opType": "continuous",
          "dataType": "double",
          "taxonomy": "currency",
          "example": "1,378,560.00",
          "allowMissing": true,
          "description": "Minimum: 0, Maximum: 999,999,999.00"
        }, 
      ],
      "ref": "http://dmg.org/pmml/v4-3/pmml-4-3.xsd"                                                       
    }
    "output": {
      "fields": [
        {
          "name": "Churn",
          "opType": "continuous",
          "dataType": "string",
          "taxonomy": "ID",
          "example": "0.67",
          "allowMissing": false,
          "description": "the possibility of the account stop doing business with a company over 6 months"
        }
      ],
      "ref": "http://dmg.org/pmml/v4-3/pmml-4-3.xsd"                                                       
    }
    "performance": {            
      "metric": "accuracy",     
      "value": 0.85
    },
    "rating": 5,
    "url": "uri://link_to_the_model"  
}

...

Expand
title500: The request is not handled correctly due to a server error


HTTP ResponseValue
HeaderContent-Type: application/json
Body{
"errorCode": "string",
"message": "string"
}

Authors


Potential Future Enhancement

...

Authors


Decision to be made

  • Data file type: What type of data we are supporting: e.g. for Delta needs to be parquet, RDBMS? Can modify the Jeffrey init cut below to support multiple data types, depending on the use case.
    • Inference: Pass by value should be good enough if it's only for predicting 
    • Train: not immediate, maybe later in Phase 2
  • Metadata structure, what kind of JSON schema do we need
  • Do we only support a specific model type (ONNX) or arbitrary number of framework
  • Decouple model (asking the model to predict and train) and data (listing, upload, download)
  • Finalize Logo

...

How can the data be accessed mechanically, for training?


...

Original content from Jeffrey. To be integrated with the main content 

This is a short doc illustrating a sample skeleton OBAIC protocol. This proposal envisions a data-centric workflow:

  1. BI vendor has some data on which predictive analytics would be valuable. 
  2. BI vendor requests AI vendor (through OBAIC) to train/prepare a model that accepts features of a certain type (numeric, categorical, text, etc.)
  3. BI vendor gives AI vendor a token to allow access to the training data with the above features. A SQL statement is a natural way to specify how to retrieve data from the datastore.
  4. When model is trained, BI vendor can see the results of training (e.g., accuracy).
  5. AI vendor provides predictions on data shared by BI vendor, again using an access token.

...

Train a New Model

function TrainModel(inputs, outputs, modelOptions, dataConfig) -> UUID

...