
Compiler SIG



Compiler SIG Goals

- Shape ONNX specification to make it implementer friendly 
- Unambiguous
- Lean
- Documented

- Build shared ONNX compiler infrastructure
- onnx-mlir
- shape inference 



Compiler SIG is an Active Community

Companies involved

● ByteDance, AMD, ARM, Groq, IBM, Microsoft, NVIDIA 

Monthly Compiler SIG meetings

● 1st Tuesday of the month, 8-9pm EST 

Weekly ONNX-MLIR meetings

● Tuesday @ Asia & Europe friendly times

Statistics 

● 621 PR by 49 developers in the last 12 months



ONNX-MLIR Infrastructure

Protobuf ingestion

Shape 
inference

Constant 
propagation

Canonicalization/
version handling

Selective inlining

ONNX to ONNX transform

MHLO TOSA LinAlg Groq CPU IRs

Conversion to official MLIR dialects

IBM Accel 

IBM & official MLIR dialects Groq dialects

Common ONNX-MLIR infrastructure



5

Groq case study

ONNX-MLIR

PyTorch

Groq mid-level IRs

Groq low-level IRs

Groq’s TSP



IBM Case study

Offers for IBM Z servers:

● Single binary with CPU and Accelerator code with no external dependences
● Optimized usage of AI accelerator
● Minimized data movement / reorganization between CPU and AI accelerator

Offers to community:

● CPU code that can run on any LLVM supported platform (Mac/Windows/Linux)
● Template for accelerators that other company may reuse 



Aspirations of the Compiler SIG

More proactive role for operations

● Making sure new operators are consistent and unambiguous

Making current ONNX compiler infrastructure more attractive

● Increasing synergy of current infrastructure to better serve users

Reaching out to other Deep Learning compiler platforms


