Compiler SIG

Compiler SIG Goals

- Shape ONNX specification to make it implementer friendly
Unambiguous
Lean
Documented

- Build shared ONNX compiler infrastructure

onnx-mlir
shape inference

Compiler SIG is an Active Community

Companies involved

e ByteDance, AMD, ARM, Groq, IBM, Microsoft, NVIDIA

Monthly Compiler SIG meetings Pull Request

Microsoft

e 1st Tuesday of the month, 8-9pm EST

Weekly ONNX-MLIR meetings
e Tuesday @ Asia & Europe friendly times

Statistics

e 621 PR by 49 developers in the last 12 months

¥

k Common ONNX-MLIR infrastructure /

X220
N —-r =

Protobuf ingestion }[Selective inlining }

-

4 N
Shape Constant Canonicalization/
L inference propagation version handling)
4 N
ONNX to ONNX transform
\ /

s

N [

(wno) [roon | () || [rme) fwen

Conversion to official MLIR dialects L IBM & official MLIR dialects

N

4)

' | Groq dialects
2R J

Grog case study

() PyTorch

®

ONNX-MLIR

» GTen

‘ AV)

Groqg mid-level IRs

Groq low-level IRs

/ N\
(10 D
» =
c [=
) - D
> = >
o > 5) o
] [e] - o =i
3 T I | 3
> 3 >
= =
[} ©
= b
I Instruction Control Unit I
(PcCle I 10)
\, /

Groqg’s TSP

IBM Case study

Offers for IBM Z servers:

e Single binary with CPU and Accelerator code with no external dependences
e Optimized usage of Al accelerator
e Minimized data movement / reorganization between CPU and Al accelerator

Offers to community:

e CPU code that can run on any LLVM supported platform (Mac/Windows/Linux)
e Template for accelerators that other company may reuse

Aspirations of the Compiler SIG

More proactive role for operations

e Making sure new operators are consistent and unambiguous
Making current ONNX compiler infrastructure more attractive

e Increasing synergy of current infrastructure to better serve users

Reaching out to other Deep Learning compiler platforms

