
Dynamic Dimension
Analysis in onnx-mlir
Compiler

Tung D. Le (Speaker), Alexandre E Eichenberger, and Tong Chen

IBM Research

1

https://github.com/onnx/onnx-mlir

ONNX Community Meetup Day 2023

https://github.com/onnx/onnx-mlir

Dynamic Dimensions in Shape Inference

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 2

"onnx.Add"(%A, %B) : (tensor<3x?x?xf32>, tensor<3x?x?xf32>) -> tensor<3x?x?xf32>

Dynamic dimension is an unknown value
at compile time

• Information about shapes is key to high performance
• Ruling out broadcasting,
• Enabling Fusion / optimized SIMD code patterns
• Determining if an operation is suitable for hardware accelerator,…

• ONNX-provided shape inference is not enough
• Compiler has shape inference anyway to generate code that computes dynamic shapes
• Compiler changes ONNX operation patterns, has multiple dialects in addition to ONNX

Dynamic Dimension Analysis in onnx-mlir

• Purpose: to explore relations among dynamic dimensions
• Current focus on discovering dimension equivalences
• For shapes with arbitrary mixtures of static and dynamic dimensions

• Two phases

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 3

Analysis

Shape-related Operator
Canonicalization

- Represent a shape by scalar constants and dimensions.
- Propagate scalars through shape-manipulating operators: Shape,

Slice, Squeeze, etc.

- Explore dynamic dimension relationship using the
existing shape inference infrastructure in onnx-mlir

- APIs to query information: sameDim(), sameShape()

Shape-related Operator Canonicalization (1/3)

• onnx.Shape is often the starting point of shape calculation

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 4

%0 = "onnx.Shape"(%arg0) : (tensor<128x?x?xf32>) -> tensor<3xi64>
%1 = "onnx.Reshape"(%arg1, %0) : (tensor<?x256xf32>, tensor<3xi64>)

-> tensor<?x?x?xf32>

128 was not propagated to this output

Shape is a tensor of integers, which is
unknown at compile time

• For complete shape inference, we must start keeping track of
shape values that were saved in tensors.

The consuming operator has no dimension
information from the tensor shape

Shape-related Operator Canonicalization (2/3)

• Expose individual dimensions to compiler

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 5

Shape

X
tensor<128x?x?xf32>

tensor<3xi64>

• A compile time shape value is represented by an onnx.Const
• A runtime shape value is represented by an onnx.Dim *

(*) onnx.Dim is an additional ONNX operator in onnx-mlir

Concat

X

Dim{1} Dim{2}Const {128}

tensor<128x?x?xf32>

Shape-related Operator Canonicalization (3/3)

• Propagate scalar dimensions through shape-manupulating operators

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 6

Concat

X

Dim{1} Dim{2}Const {128}

tensor<128x?x?xf32>

Slice

Unsqueeze

tensor<3xi64>

{start=1,
end=2}

{axis=0}

Concat

X

Dim{1} Dim{2}

tensor<128x?x?xf32>

Unsqueeze {axis=0}

tensor<2xi64>

Concat

X

Dim{1} Dim{2}

tensor<128x?x?xf32>

Const {1}

Propagate through SliceOp Propagate through UnsqueezeOp

Analysis: Value Numbering for Shapes

• Analysis algorithm:
1. Associate each dynamic dimension `?` with a unique identifier

2. Analyze an operation for dimension equivalence

3. Apply transitive closure of dimension equivalence

4. Repeat Steps 2. & 3. for operations until steady state is reached

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 7

?1,?2,?3 ?4

Op

?1 ?2

?3

Determine
?1 == ?3, ?2 == ?3

?1, ?3 ?2, ?3 ?4

?1 ?2 ?3 ?4

Dimension equivalence set

Expand a dimension set (1/2)
• Given an operator and a dynamic dimension in the output tensor
• Find ALL equivelant dynamic dimensions in the input tensors.

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 8

MatMul

X
tensor<?1x?2xf32>

Y
tensor<?2x?3xf32>

Z

tensor<?1x?3xf32>

- Dim(Z, 0) is equivalent to Dim(X, 0)
- Dim(Z, 1) is equivalent to Dim(Y, 1)
- Dim(X, 1) is equivalent to Dim(Y, 0)

Output – Input relation

Input – Input relation

Expand a dimension set (1/2)

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 9

ConcatOp

Y

Dim {1} Dim {2}

tensor<128x?1x?2xf32>

Const {1}

ReshapeX

tensor<?3x?4xf32>
tensor<128x?1x?2xf32>

Output-InputShape relation

• We have implemented this rule for onnx Reshape, ConstantOfShape, Expand,
MaxUnpool, CenterCropPad, Tile.

Apply to the BERTSquad model

• 854 dynamic dimensions are
classified into 26 sets.
• Sizes of the 26 sets

• 1 set of 817 dimensions
• 12 sets with 2 dimensions
• 13 sets with 1 dimension

Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler 10

• Future work:
• Analysis with the presence of +, -, *, /

0

0.2

0.4

0.6

0.8

1

1.2

How the analysis helps close the gap between compiling a
model with static and dynamic dimensions

BERTSquad Inference on IBM z16

static input (Baseline) dynamic input dynamic input using the analysis

Higher is better

Thank you for your listening!

88 % perf. loss due to
dynamic dimension

Regain 77% of the loss using
dimension analysis

