Dynamic Dimension Analysis in onnx-mlir Compiler

Tung D. Le (Speaker), Alexandre E Eichenberger, and Tong Chen

https://github.com/onnx/onnx-mlir

ONNX Community Meetup Day 2023

Dynamic Dimensions in Shape Inference

Dynamic dimension is an unknown value
at compile time
"onnx.Add" (\%A, \%B) : (tensor<3x?x?xf32>, tensor<3x?x?xf32>) -> tensor<3x?x?xf32>

- Information about shapes is key to high performance
- Ruling out broadcasting,
- Enabling Fusion / optimized SIMD code patterns
- Determining if an operation is suitable for hardware accelerator,...
- ONNX-provided shape inference is not enough
- Compiler has shape inference anyway to generate code that computes dynamic shapes
- Compiler changes ONNX operation patterns, has multiple dialects in addition to ONNX

Dynamic Dimension Analysis in onnx-mlir

- Purpose: to explore relations among dynamic dimensions
- Current focus on discovering dimension equivalences
- For shapes with arbitrary mixtures of static and dynamic dimensions
- Two phases

Shape-related Operator
Canonicalization

- Represent a shape by scalar constants and dimensions.
- Propagate scalars through shape-manipulating operators: Shape, Slice, Squeeze, etc.
- Explore dynamic dimension relationship using the existing shape inference infrastructure in onnx-mlir
- APIs to query information: sameDim(), sameShape()

Shape-related Operator Canonicalization (1/3)

- onnx.Shape is often the starting point of shape calculation

- For complete shape inference, we must start keeping track of shape values that were saved in tensors.

Shape-related Operator Canonicalization (2/3)

- Expose individual dimensions to compiler

- A compile time shape value is represented by an onnx.Const
- A runtime shape value is represented by an onnx.Dim *
$\left(^{*}\right)$ onnx.Dim is an additional ONNX operator in onnx-mlir
Tung, Alexandre and Tong, Dynamic Dimension Analysis in onnx-mlir Compiler

Shape-related Operator Canonicalization (3/3)

- Propagate scalar dimensions through shape-manupulating operators

Propagate through UnsqueezeOp

Analysis: Value Numbering for Shapes

- Analysis algorithm:

1. Associate each dynamic dimension `?` with a unique identifier

2. Analyze an operation for dimension equivalence

3. Repeat Steps 2. \& 3. for operations until steady state is reached

Expand a dimension set (1/2)

- Given an operator and a dynamic dimension in the output tensor
- Find ALL equivelant dynamic dimensions in the input tensors.

Expand a dimension set (1/2)

- We have implemented this rule for onnx Reshape, ConstantOfShape, Expand, MaxUnpool, CenterCropPad, Tile.

Apply to the BERTSquad model

- 854 dynamic dimensions are classified into 26 sets.
- Sizes of the 26 sets
- 1 set of 817 dimensions
- 12 sets with 2 dimensions
- 13 sets with 1 dimension
- Future work:
- Analysis with the presence of,,+- , /

Thank you for your listening!

