

ONNX Steering Committee

Alexander Eichenberger (IBM) Andreas Fehlner (Trumpf) Mayank Kaushik (NVIDIA) Prasanth Pulavarthi (MSFT) Saurabh Tangri (Intel)

Welcome!

Agenda for Steering committee presentation

- ONNX Open Governance
- ONNX "State of the State"
- Companies / Tool Chains supporting ONNX
- Summary of ONNX Requests/Proposals for 2023
- ONNX Releases
- Learn how to get more involved with ONNX Steering Committee, SIGs and Working Groups

All community meetup presentations will be recorded and made available publicly afterwards

Open Neural Network Exchange

The open standard for machine learning interoperability

GET STARTED

ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. LEARN MORE >

KEY BENEFITS

Ţ	Ω	Ţ
-	-Ji	'n

Interoperability

Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine.

SUPPORTED FRAMEWORKS >

Hardware Access

ONNX makes it easier to access hardware optimizations. Use ONNXcompatible runtimes and libraries designed to maximize performance across hardware.

SUPPORTED ACCELERATORS >

Governance

ONNX is a Community Project

Steering Committee

https://github.com/onnx/steering-committee

Alexander Eichenberger (IBM) Andreas Fehlner (Trumpf) Mayank Kaushik (NVIDIA) Prasanth Pulavarthi (MSFT) Saurabh Tangri (Intel) Special Interest Groups (SIGs) https://github.com/onnx/sigs

Architecture & Infra: Liqun Fu, Ke Zhang

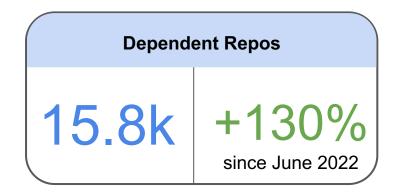
Operators: Michał Karzyński, Ganesan Ramalingam

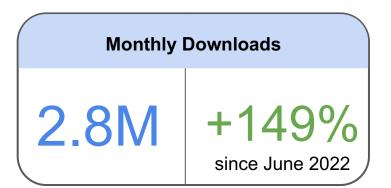
Converters: Thiago Crepaldi, Kevin Chen

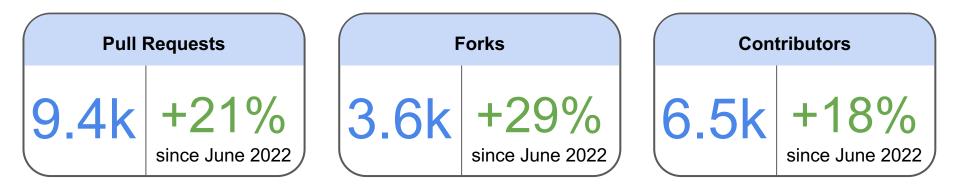
Model Zoo & Tutorials: Jacky Chen

Pre-processing: Joaquin Anton

Compilers: Alexander Eichenberger, Philip Lassen




State of the state


Global Community

Usage and Engagement

Progress Report on Requests

ONNX 1.14 Released

Release v1.14.0 onnx/onnx (github.com)

ONNX v1.11.0 comes with following updates:

- Opset Version 19, Protobuf v21
- New operators (DeformConv)
- Operator extensions (Equal, AceragePool, Pad, Resize)
- Introduces four new types for quantization / computation to speed up deep learning for GPUs and specialized accelerators.
 - FLOATE8E4M3FN, FLOATE8E5M2, FLOATE8E4M3FNUZ, FLOATE8E5M2FNUZ
 - Operator support for Cast, CastLike, QuantizeLinear, DequantierLinear
- Python 3.7 will be deprecated

Visit ONNX.AI website to learn more

Thank you everyone for your countless hours of work!

ONNX 1.13 Released

Release v1.13.0 onnx/onnx (github.com)

ONNX v1.13.0 comes with following updates:

- New operators (Col2Im, BitwiseNot, BitwiseAnd, BitwiseOr and BitwiseXor)
- Operator extensions (Resize, Pad, OptionalHasElement, OptionalHasElement, OptionalGetElement, ScatterElement,ScatterND, Split, LpPool)
- Function Updates
 - CenterCropPad, mish,GroupNormalization
- ONNXIFI: has been deprecated.
- ONNX 1.13.0 supports Python 3.11
- Support for Apple M1/M2 ARM processors

Visit ONNX.AI website to learn more

Thank you everyone for your countless hours of work!

2023 Proposals

1) Support for Hybrid FP8 and MHA operator. Arnab Raha / Intel

2) Support for FP8 data formats. Naveen Mellempudi / Intel

3) Float16 support in quantizelinear and dequantizelinear. Murali Ambati / Intel

4) Adding bit parameter to QuantizeLinear and DequantizeLinear operator for improved hardware compatibility. Lucas Fischer

5) Adopting a wider set of quantized ops into ONNX. Peter van Beek, Aleksandar Sutic, Thomas Gardos / Intel

6) Distributed Inference and Communication Collectives. Ganesan Ramalingam / Microsoft

7) Add a tokenization op. W. Tambellini / RWS

8) Tokenizer / Support for Transformers. Bourhan Dernayka / IBM

9) Overhauling Training Info Proto for more comprehensive training information. Taka Shinagawa / Microsoft

10) Web AI GPU support for JavaScript. Alexander Visheratin

11) Double calculation on Tree Ensemble (Regressor & Classifier) ML operators. Stefan Acin / Aizon

12) Additional beam search support and Dot Product Attention Op. William Tambellini / RWS/LanguageWeaver

13) Additional OP DCNv2 in ONNX format. Wei Wen / Intel

14) Op support and usability improvements to ONNX for GNNs. Ramakrishnan Sivakumar / Groq

15) Multi-Head attention operation on ONNX. Alessandro Palla / Intel

16) Sparse Tensor Support. Jacob Renn / Al Squared

17) Define operator attributes and add data-driven post-training sparsification capabilities. Manuj Sabharwal, Ken Koyanagi / Intel

18) Datetime parsing. Christian Bourjau / QuantCo

Thank you ...

- Please stay engaged and continue your contributions to ONNX and its related projects.
- Remember to use the following ONNX resources:
 - Website: <u>https://onnx.ai/</u>
 - GitHub: <u>https://github.com/onnx</u>
 - Slack: (join <u>https://slack.lfai.foundation</u> email, password, then find onnx-general)
 - Calendar: <u>https://onnx.ai/calendar</u>
 - Mailing List: <u>https://lists.lfai.foundation/g/onnx-announce</u>

Questions?