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We are solving real-world problems by deep learning

About Preferred Networks
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MN-3 supercomputer

Material discovery

Medical image analysis

Character generation



About Me

Zijian Xu

I optimize neural network models
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Want to share

● a use case of ONNX for model optimization
● our motivation to have a solid shape inference

Today’s Topic
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PFN’s inhouse neural network compiler and runtime

PFVM
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Export Optimize Execute

PFVM’s domain



PFN’s inhouse neural network compiler and runtime

PFVM

6

Conv

Elemwise fusion

Free

DeviceToHost

…
…

Input ONNX graph Backward generation 
and model optimization

Schedule graph 
and emit operators

Execute them with 
libtorch API and 
accelerator’s API



Why ONNX as IR?

● Stable and well documented
● Focused on interface and doesn’t do too much
● Shape inference
● Useful test cases
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Let’s see how shape inference is 
important in model optimization



To reduce overhead of kernel launch, PFVM fuses 
element-wise operators

Case 1: Element-wise Fusion
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CUDA kernel launch

ReduceMax kernel

Add kernel

CUDA profile will look like…

CUDA kernel launch

Sub kernel

CUDA kernel launch

Mul kernel

CUDA kernel launch



To reduce overhead of kernel launch, PFVM fuses 
element-wise operators

Case 1: Element-wise Fusion

10

CUDA kernel launch

ReduceMax kernel

Add kernel

CUDA profile will look like…

CUDA kernel launch

Sub kernel

CUDA kernel launch

Mul kernel

CUDA kernel launch

CUDA kernel launch

ReduceMax kernel

Fusion kernel

CUDA kernel launch



Can we always fuse adjacent element-wise operators?

- No. Must be broadcastable

Case 1: Element-wise Fusion
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Can fuse Can’t fuse

We can only 
fuse this subset



Can we always fuse adjacent element-wise operators?

- No. Must be broadcastable

Case 1: Element-wise Fusion
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We lose fusion opportunities 
if we have unknown dims



Case 2: Graph simplification
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This Reshape can be Identity (and thus can be removed)



Case 2: Graph simplification
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This Reshape can be Identity (and thus can be removed)

Then we can do element-wise fusion



Case 2: Graph simplification
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Do models contain so many unnecessary operators?

- Not so many if the model is written by human

- But may contain a lot if it’s generated by programs
● backward pass generation
● neural architecture search



Case 2: Graph simplification
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Let’s see example at Appendix



Insert recomputation pass to reduce peak memory

Case 3: Automatic checkpointing
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We need tensor size to estimate memory usage

When models contain dynamic axes (dim params)

● OK!  Users can estimate them like n=100000

When models contain unknown dims

● Estimation won’t work

Case 3: Automatic checkpointing
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Why shape inference is important

Once we get unknown dim, we will have many unknown 
dims after that!

We lose many opportunities of optimization if shapes are 
unknown
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Symbolic inference from 1.10 is great!!

Current ONNX Shape inference

20

ConstantOfShape output can be inferred 
from input of shape [2] by data propagation!



Current ONNX Shape inference

For static case, it’s already very nice

For dynamic case, we want more supports!

Q: Do we need to support case like Concat([M], [N])?
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PFN’s supercomputer for deep learning

MN-Core limits model dynamicity and gets great 
optimizations!

● MN-Core is a very large scale fast SIMD 
machine, and its scheduling is really 
challenging!

● Since MN-Core model is static, MN-Core 
programs know exact computation time or 
memory usage at compile-time!

● PFVM is integrated in MN-Core compiler 
and do some simplification and shape 
inference

More optimized model execution
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Thank you!

If you have any questions, please reach out to me!
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Appendix: Example Optimization

Consider following example

Forward model:  y = max(a, b)
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a, b: parameters

max: element-wise max with multidirectional broadcasting



Appendix: Example Optimization

Consider following example

Forward model:  y = max(a, b)

We need grad@a and grad@b from grad@y
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Appendix: Example Optimization

Forward model:  y = max(a, b)

gy’ = where(a == b, grad@y / 2, grad@y)

grad@a = mul(gy’, cast(a >= b)).sum_to(a.shape)

grad@b = mul(gy’, cast(a <= b)).sum_to(b.shape)
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These reduction operators are 
heavy but can be removed 
when there is no broadcast



Appendix: Example Optimization
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Simplified graph



Appendix: Example Optimization
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Elementwise fusion


