
PFVM - A Neural Network Compiler that
uses ONNX as its intermediate
representation

Preferred Networks, Zijian Xu

1

We are solving real-world problems by deep learning

About Preferred Networks

2
MN-3 supercomputer

Material discovery

Medical image analysis

Character generation

About Me

Zijian Xu

I optimize neural network models

3

Want to share

● a use case of ONNX for model optimization
● our motivation to have a solid shape inference

Today’s Topic

4

PFN’s inhouse neural network compiler and runtime

PFVM

5

Export Optimize Execute

PFVM’s domain

PFN’s inhouse neural network compiler and runtime

PFVM

6

Conv

Elemwise fusion

Free

DeviceToHost

…
…

Input ONNX graph Backward generation
and model optimization

Schedule graph
and emit operators

Execute them with
libtorch API and
accelerator’s API

Why ONNX as IR?

● Stable and well documented
● Focused on interface and doesn’t do too much
● Shape inference
● Useful test cases

7

Why ONNX as IR?

● Stable and well documented
● Focused on interface and doesn’t do too much
● Shape inference
● Useful test cases

8

Let’s see how shape inference is
important in model optimization

To reduce overhead of kernel launch, PFVM fuses
element-wise operators

Case 1: Element-wise Fusion

9

CUDA kernel launch

ReduceMax kernel

Add kernel

CUDA profile will look like…

CUDA kernel launch

Sub kernel

CUDA kernel launch

Mul kernel

CUDA kernel launch

To reduce overhead of kernel launch, PFVM fuses
element-wise operators

Case 1: Element-wise Fusion

10

CUDA kernel launch

ReduceMax kernel

Add kernel

CUDA profile will look like…

CUDA kernel launch

Sub kernel

CUDA kernel launch

Mul kernel

CUDA kernel launch

CUDA kernel launch

ReduceMax kernel

Fusion kernel

CUDA kernel launch

Can we always fuse adjacent element-wise operators?

- No. Must be broadcastable

Case 1: Element-wise Fusion

11

Can fuse Can’t fuse

We can only
fuse this subset

Can we always fuse adjacent element-wise operators?

- No. Must be broadcastable

Case 1: Element-wise Fusion

12

We lose fusion opportunities
if we have unknown dims

Case 2: Graph simplification

13

This Reshape can be Identity (and thus can be removed)

Case 2: Graph simplification

14

This Reshape can be Identity (and thus can be removed)

Then we can do element-wise fusion

Case 2: Graph simplification

15

Do models contain so many unnecessary operators?

- Not so many if the model is written by human

- But may contain a lot if it’s generated by programs
● backward pass generation
● neural architecture search

Case 2: Graph simplification

16

Let’s see example at Appendix

Insert recomputation pass to reduce peak memory

Case 3: Automatic checkpointing

17

x

y

z

1

2

3

4

5

6

7

x

y

z

x

x

x

7

6

5

4

3

2

1

1

1

1

2

2

3

Memory: ✕
Latency: ◎

Memory: ◎
Latency: ✕

Memory: ○
Latency: ○

x

y

z

x

7

6

5

4

3

2

1

1

3

We need tensor size to estimate memory usage

When models contain dynamic axes (dim params)

● OK! Users can estimate them like n=100000

When models contain unknown dims

● Estimation won’t work

Case 3: Automatic checkpointing

18

Why shape inference is important

Once we get unknown dim, we will have many unknown
dims after that!

We lose many opportunities of optimization if shapes are
unknown

19

Symbolic inference from 1.10 is great!!

Current ONNX Shape inference

20

ConstantOfShape output can be inferred
from input of shape [2] by data propagation!

Current ONNX Shape inference

For static case, it’s already very nice

For dynamic case, we want more supports!

Q: Do we need to support case like Concat([M], [N])?

21

PFN’s supercomputer for deep learning

MN-Core limits model dynamicity and gets great
optimizations!

● MN-Core is a very large scale fast SIMD
machine, and its scheduling is really
challenging!

● Since MN-Core model is static, MN-Core
programs know exact computation time or
memory usage at compile-time!

● PFVM is integrated in MN-Core compiler
and do some simplification and shape
inference

More optimized model execution

22

Thank you!

If you have any questions, please reach out to me!

23

24

Appendix: Example Optimization

Consider following example

Forward model: y = max(a, b)

25

a, b: parameters

max: element-wise max with multidirectional broadcasting

Appendix: Example Optimization

Consider following example

Forward model: y = max(a, b)

We need grad@a and grad@b from grad@y

26

Appendix: Example Optimization

Forward model: y = max(a, b)

gy’ = where(a == b, grad@y / 2, grad@y)

grad@a = mul(gy’, cast(a >= b)).sum_to(a.shape)

grad@b = mul(gy’, cast(a <= b)).sum_to(b.shape)

27

Appendix: Example Optimization

Forward model: y = max(a, b)

gy’ = where(a == b, grad@y / 2, grad@y)

grad@a = mul(gy’, cast(a >= b)).sum_to(a.shape)

grad@b = mul(gy’, cast(a <= b)).sum_to(b.shape)

28

These reduction operators are
heavy but can be removed
when there is no broadcast

Appendix: Example Optimization

29

Simplified graph

Appendix: Example Optimization

30

Elementwise fusion

