
OPERATORS SIG Michal Karzynski (Intel)

G. Ramalingam (Microsoft)



OVERVIEW

 A key part of the ONNX spec is the set of operators (aka “opsets”) that make up the spec

 Organized into domains

 ONNX domain: focus on DNN operators

 ONNX-ML domain: focus on classical ML operators

 Versioned

 The Operators SIG focuses on the definition of the “operator sets”

 Additions of new operators

 Clarification of op specs

 Updates to op specs



CHANGES SINCE LAST COMMUNITY PRESENTATION

OPSETS 16 AND 17

 New Ops/Functions:

 GridSample

 used in Spatial Transformer Networks

 LayerNormalization

 Widely used, e.g. in language models like BERT

 Signal processing (DFT, STFT, HannWindow, HammingWindow, BlackmanWindow, MelWeightMatrix)

 Used in audio models (speech-to-text, audio cleanup, audio classification)

 SequenceMap

 enables batched pre-processing, e.g. a batch of images of varying sizes for ResNet-50

 All are functions except GridSample, DFT, STFT, MelWeightMatrix.

 DFT and STFT are planned to be promoted to be functions soon.

https://arxiv.org/abs/1506.02025


CHANGES SINCE LAST COMMUNITY PRESENTATION

OPSETS 16 AND 17

 Updates to existing ops

 Support duplicate index values in scatter ops

 via reduction (add or multiple all values at an index)

 ScatterND and ScatterElements

 Add bfloat16 support (Scan, LessOrEqual, GreaterOrEqual, LeakyRelu, PRelu, Where)

 Add support for optional types (If, Loop, Identity)

 RoiAlign: adds attribute coordinate_transformation_mode to adjust half-pixel error



ONNX Roadmap:
What Next?



Key Goals

• Clear and unambiguous specification
• Improve documentation (Issue #3651)

• Compact specification
• Make it easier to implement backends, especially on new hardware
• Reduce operator surface area (of core primitive ops)

• Expressiveness
• Enable newer models, pre-processing, post-processing
• … more ops!

• Efficiency
• Need for more coarse-grained (composite) ops!

https://github.com/onnx/onnx/issues/3651


ONNX Functions

• ONNX Functions: a key enabler to meeting our goals:
• Defines the function in terms of other (core operators)

• Provides an executable specification (reduces ambiguity)

• Provides a default implementation (reducing core operator surface area)
• Less concerned about adding new function definitions to increase expressiveness

• Enable use of specialized kernels, when needed and where available, for 
efficiency



Next Steps

• Reduce existing primitive operator surface area
• Around 25-30 of existing operators can be promoted into functions (Issue #3877)

• Enable authoring ONNX functions using Python
• And automatically convert to FunctionProto (ONNX’s serialized representation)
• Easier to author
• Easier to read and understand (edge case behavior or fine details)

• and execute them in Python debuggers
• As a tool to understand the ONNX spec, not intended for production-use or perf
• To test, debug, and understand function definitions

• ONNXScript (a subset of Python)

https://github.com/onnx/onnx/issues/3877


M_SQRT1_2 = math.sqrt(0.5)

@script()

def Gelu(X):

phiX = 0.5 * (op.Erf(M_SQRT1_2 * X) + 1.0)

return X * phiXExample
ONNX

Functions
in

Python

Gelu (X) => (return_val) {

tmp = Constant <value = <Scalar Tensor [0.5]>>()

tmp_0 = Constant <value = <Scalar Tensor [0.7071067690849304]>>()

tmp_1 = Mul (tmp_0, X)

tmp_2 = Erf (tmp_1)

tmp_3 = Constant <value = <Scalar Tensor [1.0]>>()

tmp_3_4 = CastLike (tmp_3, tmp_2)

tmp_5 = Add (tmp_2, tmp_3_4)

tmp_6 = CastLike (tmp, tmp_5)

phiX = Mul (tmp_6, tmp_5)

return_val = Mul (X, phiX)

}



Another example (with control-flow)

def Dropout(data, ratio, training_mode, seed):

if (training_mode):

rand = RandomUniformLike(data, seed=seed, dtype=FLOAT)

mask = (rand >= ratio)

output = Where(mask, data, 0) / (1.0 - ratio)

else:

mask = Expand(True, Shape(data))

output = data

return (output, mask)



Enable debugging via eager-mode 



def LeakyRelu(X, alpha=0.01):

return Where(X < 0, alpha * X, X)

def HardSigmoid (X, alpha=0.2, beta=0.5):

return Max(0, Min(1, alpha * X + beta))

def Shrink(x, bias = 0.0, lambd = 0.5):

return Where(x < -lambd, x + bias,

Where(x > lambd, x - bias, 0))

def Softplus(X):

return Log(Exp(X) + 1)

def Softsign(X):

return X / (1 + Abs(X))

Example
ONNX

Functions
in

Python



THANKS FOR COMING!!!

Please Get Involved!

 Github: PRs, Issues, and Discussions

 Slack channel: https://slack.lfai.foundation and join onnx-operators

 Monthly SIG meetings (see slack channel for announcements)

https://slack.lfai.foundation/

