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Background Atruvia MVP topology
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New Atruvia requirements

* Drop Atlas, use an Egeria connector

* Support more event formats for discovery plain json and maybe
protobuf

* Get schema from:
* Introspection of event payloads
* Confluent schema registry
* Other schema registries



Priorities

* Juergen presented his vision for Atruvia and mentioned:
e A Data Catalog connector
* An OPA Connector which will determine visibility and access and the like
* The following order is roughly the priority order of integration connectors they are
interested in developing
* Strimzi topic
* Event schema (Confluent Schema Registry and others)
Discovery processing
Strimzi infrastructure
OPA
Data Catalog

* We mentioned the producers and consumers, there was a question around where

exactly these APIs should be a called and so these APIS can be supplied with the
appropriate information.

* Ljupcho and Nic talked of being interested in the discovery part of this.



Workgroup initial achievements

* We created a new Egeria repository for the Strimzi connector
e Populated and builds
e https://github.com/odpi/egeria-connector-integration-topic-strimzi

* We create a new Egeria repository for the event schema connector
* Not yet populated, will hold schema registry connector
* Ongoing Atruvia development in their current internal dev sprint.


https://github.com/odpi/egeria-connector-integration-topic-strimzi

More details on the event schema integration
connector — ‘in memory’

3rd party tech
)
data flow
Get Egeria content
Get 3rd party technology content
topic integration
context
l;r::)s Z‘:‘;Ft’htz: —_—t create a List of commands
check the
commands are as
expected data flow
execute the commands —>
) —
| 7

Each child connector provides the event content and maps to

Cetocpaviieeickegyiconiont the internal maps in a standard technology agnostic way




A Proposed ‘all in memory’ topology
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More sophisticated topologies

* Minimize memory footprint, using events do minimal processing:

* For small schemas — polling all in memory might be quicker as there is no re-
guerying the same elements

* |s there really a schema that would be too big for in-memory?

» Scalability testing required to further understand how different connector patterns effect
the overall time to process changes?

* |f changes to schemas are few and minimal — grabbing the whole schema
seems overkill / inefficient.



Discovery

* This discovery should not occur in the integration connector; it should
use:

* engine host
* ODF (discovery framework) .

* Talking of looking at plain json event payloads , and extracting String
& list & object names relationships and properties into Egeria.

* Possibly consume protobuf



Infrastructure OMAS + Integration connector

* Using this to pull out the Kafka cluster and Kafka Connect cluster
configuration from Kubernetes

e Use Strimzi custom resource definitions

* Link to Kafka Topics and Kafka Connectors



Current Status Atruvia



First version of the Event Schema Connector

* Take all top level event schemas from Egeria into a local cache
* Read all subjects from Schema Registry and extract the topic name

* Get the latest version of the subject and compare it against the local
cache

* If the latest version is newer than the cache, replace the schema
including all sub-schemas



Integrate Github and Atruvia Bitbucket

e Atruvia uses Bitbucket as code repository
* All code has to be maintained in Bitbucket
* Only Atruvia employees are allowed to commit to Bitbucket

* Hence, code from Github cannot be pulled directly into Bitbucket
(unknown commiters)



How we can handle this
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A more detailed view ...
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More challenges

* Pushing changes from Bitbucket to Github makes personal data of all
committers public (e-mail adresses) = must be accepted from each
committing employee (GDPR regulations)

* No complete changelog in Bitbucket = regulatory requirements



