Schema element workgroup
update

David Radley (Egeria maintainer @IBM) and Jirgen Hemelt (Atruvia)

Workgroup oarticipants

* |IBM
e David (Egeria)
* Nigel (Egeria)
* Nic Townsend (IBM Integration)
* lan Perry (IBM sales)

* Atruvia
e JUrgen Hemelt
e Darius Jockel
 Marcel Engbers
* Tunc Taylan Turuncg

* ING

* Ljupcho Palashevski

Meeting schedule

e 9th March
e 17t March
 5th May Next meeting

Priority common requirements

Schema
registry
connector

Strimzi Topic
connector

Event Schema
‘ discovery

N
N
N
N
N
N
N

Background Atruvia MVP topology

Strimzi / Kafka T Event crawler

@ Get topic information from Strimzi into Egeria

@ Get event schema from atlas into Egeria
@ Populate kafka consumer and

producer information into Egeria
@ Verify content is in Egeria

@ Push Egeria metadata into Dataskop

MVP deliverables

Kafka used by Egeria
cohort

| ®

etadata
repo

Dataskop

not in MVP
ﬁé\\-t
N
etadata
Atlas repo
LEBI event custom types |
Internal Kafka
Atlas event
.g. topic ABC created
@ @)
, ‘ v
Strimzi Integration connector EBI Integration connector | |~ Dataskop Integration
L] ; v) connector
—_ .
Egeria Metadata Server
[
Egeria platform
A OMAS
e
Egeria React Rex Ul | | (ItInfrastructure
repo 9 \ manager)
O]
Relevant Egeria enhancements: Verify content present in
1- enhance data manager / asset manager Egeria
omas

to include consumers and producers
https://github.com/odpi/egerialissues/5804
2- Egeria types to represent event key vs
payload content. Juegen to raise issue.

\ populate consumers and

producers

New Atruvia requirements

* Drop Atlas, use an Egeria connector

* Support more event formats for discovery plain json and maybe
protobuf

* Get schema from:
* Introspection of event payloads
* Confluent schema registry
* Other schema registries

Priorities

* Juergen presented his vision for Atruvia and mentioned:
e A Data Catalog connector
* An OPA Connector which will determine visibility and access and the like
* The following order is roughly the priority order of integration connectors they are
interested in developing
* Strimzi topic
* Event schema (Confluent Schema Registry and others)
Discovery processing
Strimzi infrastructure
OPA
Data Catalog

* We mentioned the producers and consumers, there was a question around where

exactly these APIs should be a called and so these APIS can be supplied with the
appropriate information.

* Ljupcho and Nic talked of being interested in the discovery part of this.

Workgroup initial achievements

* We created a new Egeria repository for the Strimzi connector
e Populated and builds
e https://github.com/odpi/egeria-connector-integration-topic-strimzi

* We create a new Egeria repository for the event schema connector
* Not yet populated, will hold schema registry connector
* Ongoing Atruvia development in their current internal dev sprint.

https://github.com/odpi/egeria-connector-integration-topic-strimzi

More details on the event schema integration
connector — ‘in memory’

3rd party tech
)
data flow
Get Egeria content
Get 3rd party technology content
topic integration
context
l;r::)s Z‘:‘;Ft’htz: —_—t create a List of commands
check the
commands are as
expected data flow
execute the commands —>
) —
| 7

Each child connector provides the event content and maps to

Cetocpaviieeickegyiconiont the internal maps in a standard technology agnostic way

A Proposed ‘all in memory’ topology

Strimzi / Kafka

@

Confluent schema
registry registry

® ®

Other schema

@ \ schema

discovery
Strimzi Integration connector New Integration connector Dataskop Integration
v connector
——
Egeria Metadata Server
¥

Egeria platform
OMAS

Egeria React Rex Ul

(It Infrastructure

™~

manager)

@ Get topic information from Strimzi into Egeria

@ Get event schema by introspecting payloads from topic

@ Get schema from confluent schema registry (check license)

@ Get schema from other schema registry check license

@ Ul verification

@ Dataskop connector

@ consumers and producers

Kafka used by Egeria
cohort

®

-
\ etadata

repo

Dataskop

®

Verify content present in

Egeria

populate consumers and
producers

More sophisticated topologies

* Minimize memory footprint, using events do minimal processing:

* For small schemas — polling all in memory might be quicker as there is no re-
guerying the same elements

* |s there really a schema that would be too big for in-memory?

» Scalability testing required to further understand how different connector patterns effect
the overall time to process changes?

* |f changes to schemas are few and minimal — grabbing the whole schema
seems overkill / inefficient.

Discovery

* This discovery should not occur in the integration connector; it should
use:

* engine host
* ODF (discovery framework) .

* Talking of looking at plain json event payloads , and extracting String
& list & object names relationships and properties into Egeria.

* Possibly consume protobuf

Infrastructure OMAS + Integration connector

* Using this to pull out the Kafka cluster and Kafka Connect cluster
configuration from Kubernetes

e Use Strimzi custom resource definitions

* Link to Kafka Topics and Kafka Connectors

Current Status Atruvia

First version of the Event Schema Connector

* Take all top level event schemas from Egeria into a local cache
* Read all subjects from Schema Registry and extract the topic name

* Get the latest version of the subject and compare it against the local
cache

* If the latest version is newer than the cache, replace the schema
including all sub-schemas

Integrate Github and Atruvia Bitbucket

e Atruvia uses Bitbucket as code repository
* All code has to be maintained in Bitbucket
* Only Atruvia employees are allowed to commit to Bitbucket

* Hence, code from Github cannot be pulled directly into Bitbucket
(unknown commiters)

How we can handle this

ODPI Github
[
Fork
v
(Remote Atruvia Github
<<branch>>
O feature-xy
o @
allow-unrelated-histories allow-unrelated-histories
squash, allow-unrelated-historie | squash

'Remote Atruvia Bitbucket

o Bitbucket

master/feature-branch

A3 must be merged with B4 must be merged with
"allow-unrelated-histories "squash” to combine B3 and
because B1 and A2 do not B2 can be merged A4 can be merged B4 and to change the author of
have a common ancestor. A3 directly into master directly into feature-xy the commit. AS must be

must be merged back also with because they share because they share the merged back with "allow-
"allow-unrelated-histories". the same ancestor. same ancestor unrelated-histories".

A more detailed view ...

Internet Atruvia
github Bitbucket
N N Local Remote
organization: organization: clone Target
ODPI Atruvia 9
geria-connector-integration-topic-strimzi egeria-connector-integration-topic-strimzi egeria-connector-integration-topic-strimzi geria-connector-integ t
:origin-github/feature-
branch-gh lon
fork N touch README.md
. add remote
feature-branch-
-feature-branch-
gh commit / push
_________ return
merge
--squash
--allow-unrelated-histories commit / push
merge g
[-allow-unrelated-histories
changes pull
from Egeri return
...)
pull
B return
.. >
merge
--squash
--allow-unrelated-histories|)
commit / push
" merge
[-allow-unrelated-histories
change from
Atruvia
make changes
commit / push N
commit / push merge
Create pull request-

More challenges

* Pushing changes from Bitbucket to Github makes personal data of all
committers public (e-mail adresses) = must be accepted from each
committing employee (GDPR regulations)

* No complete changelog in Bitbucket = regulatory requirements

