
Ascend CANN and ONNX : inference interoperability for better performance

## Memory Lane - Huawei's Participation In ONNX









#### 

#### MARCH ZOZI

### ONNX Community Virtual Meetup

8:00 AM Chino (Thur 3/25) 5:00 PM PT/USA (Wed 3/24) 🌑

#### SCHEDLILE 议程

8:00 AM China (Thur 3/25) 5:00 PM PT/USA (Wed 3/24)

ONNX Progress Update Speakers: ONNX Steering Committee Prosonth: Harry: Jim: Joohaan: Sheng

8:25 AM Chino (Thur 3/25) 5:25 PM PT/USA (Wed 3/24)

popONNX: Support ONNX on IPU Speaker: Han Zhao (GraphCore-UK)

Spring Project: Multi Backend Neurol Network Auto Quantization and Deplay over DNNX Speaker: Yu Feng Wei (SenseTime-HongKong)

ONNX Runtime for Mabile Scenarios: From model to an-device inferencing Speaker: Tom Wildenhain (Microsoft-USA)

ONNX on microcontrollers Speaker: Rohit Shorma (AlTechSystems)

Monitoring and Explaining DNNX Models in Production

Speaker: Krishna Gade (FiddlerAl-USA\_CA)

ONNX client for Acumos Speaker: Philippe Desse (Desse France)

Deploy DNNX model seamlessly across the cloud, edge, and mobile devices using MindSpore Speaker: Lean Wang (Huawei-China)

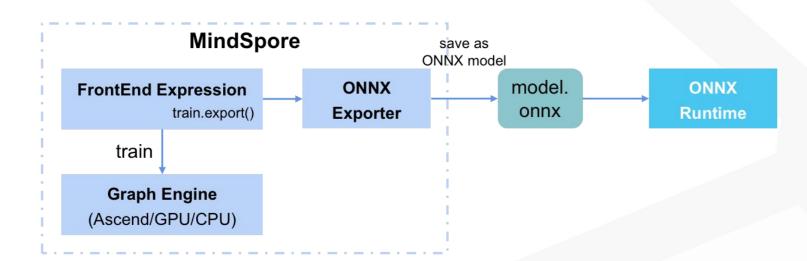
ONNX Runtime Training

## Memory Lane - Huawei's Participation In ONNX

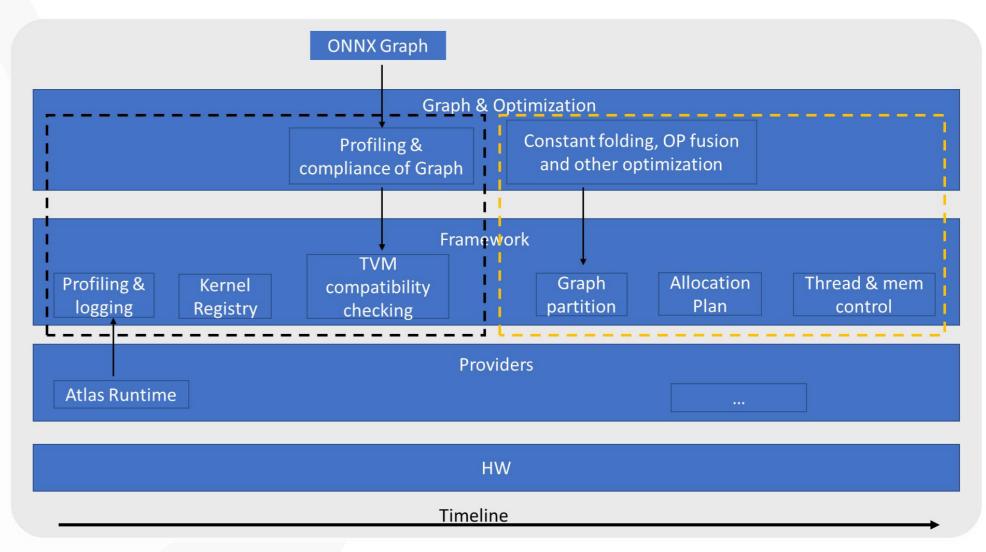
### **ONNX Edge Working Group**

This is artifacts repository where ONNX Edge working group will capture various artifacts and deliverables. Structure of the space will evolve over time.

#### **Working Group Status**


ACTIVE

#### Contributors


Note: Contributors list will be updated as per participation and contributions.

- Milan Oljaca (Qualcomm) (co-chair)
- Ofer Rosenberg (Qualcomm) (co-chair)
- Yedong Liu (Huawei)
- Saurabh Tangri (Intel)
- Manash Goswami (Microsoft)

#### MindSpore ONNX Exporter Introduction



- 1. Use MindSpore model train API to perform model training with saving checkpoint parameters
- 2. Load model parameters into the network to be exported (such like LeNet)
- 3. Call train.export() to convert MindSpore model to ONNX model
- 4. Perform model inference on ONNX Runtime

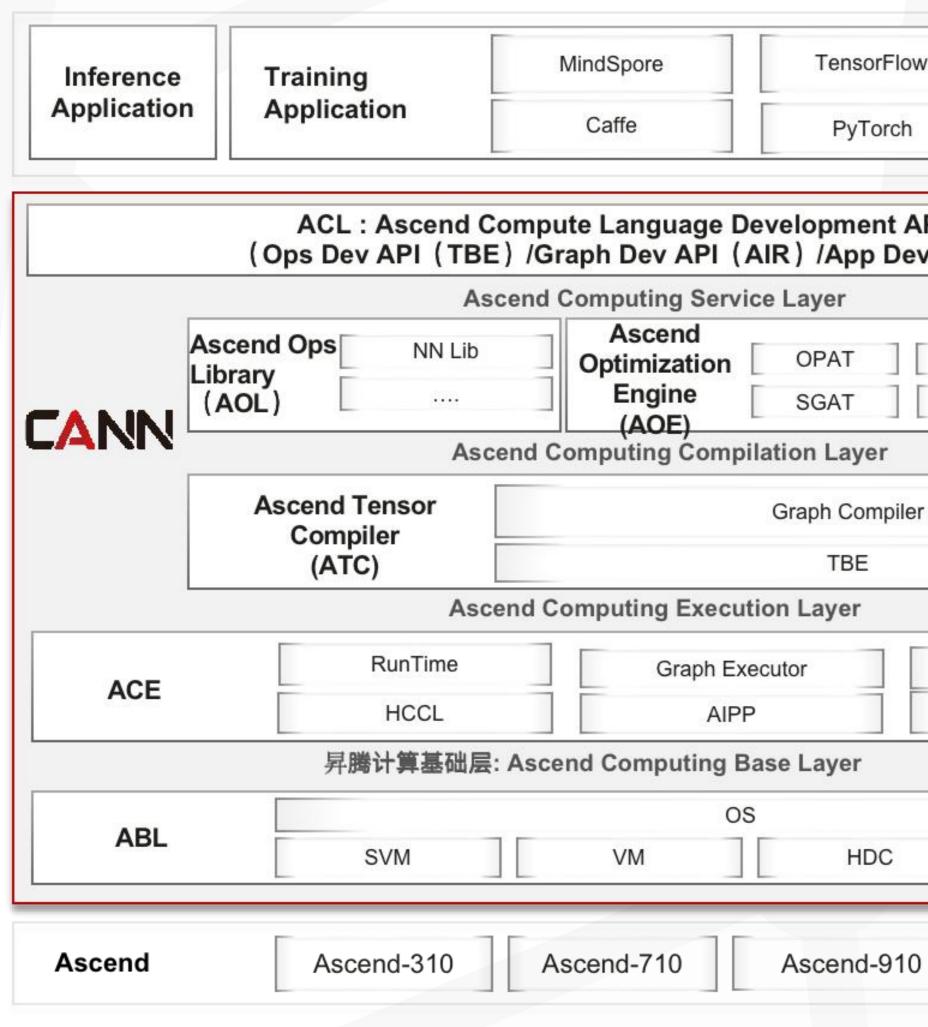


The black box is the "profiling phase" and the orange box is the "execution phase"

### hellowaywewe#99 Add Ascend logo

The Ascend ModelZoo software platform is based on several mainstream deep learning frameworks, such as PyTorch, TensorFlow, and MindSpore, to provide a wealth of deep learning models. Users can directly export these models to ONNX format and deploy them on the Ascend hardware platform to improve inference efficiency in reasoning scenarios.

For this reason, I think we can add Ascend logo in the deploy model module of ONNX supported tools page. Please feel free to ask me if you have any questions, thanks. **Comments** 


2

onnx/onnx.github.io | Jun 25th | Added by GitHub (Legacy)



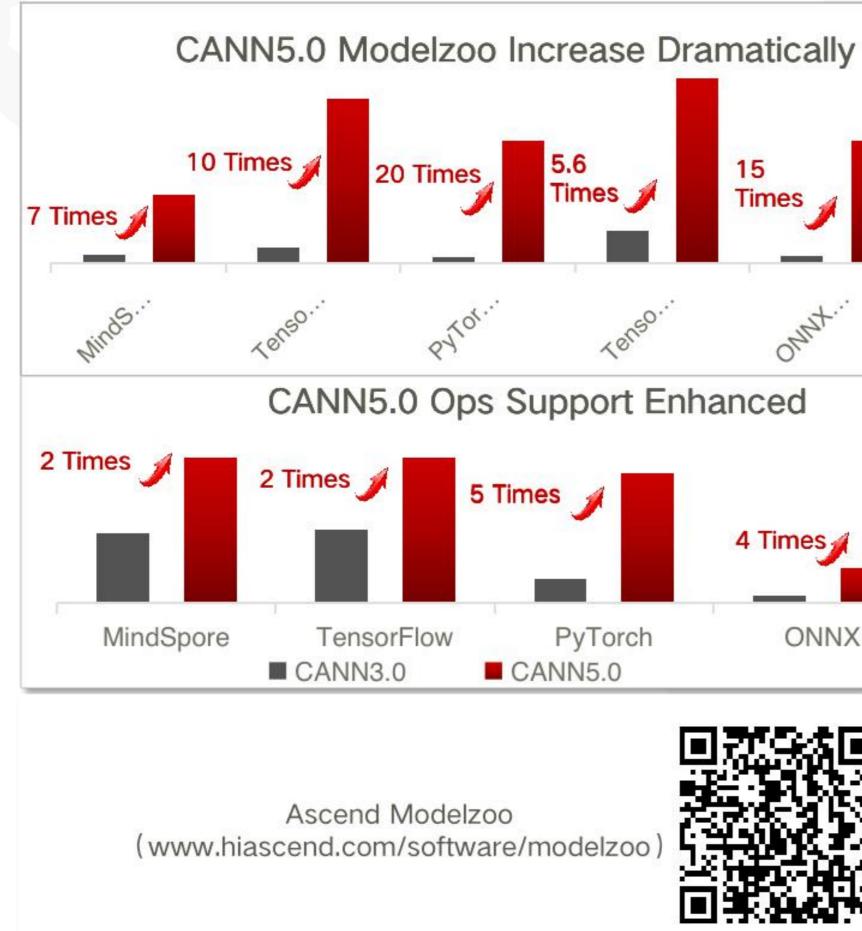
# **Al Heterogeneous Computing Architecture: CANN 5.0**

(Compute Architecture for Neural Networks)



| MindStudio                     |
|--------------------------------|
| PI<br>v API)                   |
| AMCT Framework<br>GDAT Adapter |
|                                |
| DVPP<br>                       |
|                                |
| IP & Chip                      |

### What Is CANN


**CANN** is an AI Heterogeneous Computing Architecture which supports users to quickly develop AI applications on Ascend hardware platform via providing multiple layer of programming interfaces

### **Key Features**

- Unified Appication Programming Interface: ACL as the standardized programming interface which abstract underlying hardwares.
- Unified Neural Network Graph Construction
  Interface: AIR as the stadardized graph construction
  interface which supports multiple frameworks
- High Performance Compute Engine and Operater Library
- **Basic Service:** capabilites include drivers, virtualization, media, communications, etc.

# CANN 5.0 and onnx: accelerating inference model on Ascend

- ٠
- by the end of the year



Currently support 140+ onnx inference models, will reach to 200+ by the end of the year Support opset 8~13 with opset 11 as the key set, 90+% of the Ops will be supported on CANN

| 3D-Resnet                   | InceptionV4          | RetinaNet+FPN        |
|-----------------------------|----------------------|----------------------|
| AlexNet                     | LSTM                 | RetinaNet-detectron2 |
| BERT_BASE_UNCASED           | MaskRCNN-NPU         | SENet                |
| Cascade_RCNN-<br>detectron2 | MGN                  | seresnext-50_32x4d   |
| CascadeRCNN                 | MnasNet1_0           | ShuffleNetV1         |
| CRNN                        | MobileNetV1          | ShuffleNetV2         |
| CSPResNeXt50                | MobileNetV2          | ShuffleNetV2+        |
| DeeplabV3+                  | MobileNetV3          | SKNet50              |
| deepmar                     | OSNet                | SPNASNet100          |
| Deit                        | РСВ                  | SqueezeNet1_1        |
| DenseNet121                 | PSENet               | SSD-VGG16            |
| DnCNN                       | RegNetX-1.6GF        | Transformer          |
| DPN                         | RegNetY-1.6GF        | TransformerXL        |
| EfficentNetB5               | ReID-strong-baseline | UNet                 |
| EfficientNetB0              | Res2Net101-v1b       | UNet++               |
| EfficientNetB3              | Resnet101            | VGG16                |
| FasterRCNN                  | ResNet101            | VGG19                |
| FCN8S                       | Resnet152            | Vilbert              |
| GhostNet1.0x                | ResNet152            | VoVNet39             |
| Googlenet                   | ResNet18             | Wide_ResNet101_2     |
| HRNet                       | Resnet34             | wide_resnet50_2      |
| I3D                         | ResNet34             | Xception             |
| ICNet                       | ResNet50             | YoloV3               |
| Inception-ResNet-V2         | ResNeXt101_32x8d     | YoloV4               |
| InceptionV3                 | ResNeXt50            | YoloV5               |

Pain points need to be addressed in the community:

1. PyTorch NLP and Audio models' export to ONNX is still very difficult, traning model's export to ONNX is also difficult for developers: Trace doesn't support loop and if; Interchase of the second se There is a 35%~40% failure rate when exporting pytorch model to onnx

2. The iteration of Opset is very fast which creates difficulties for hardware engineers to do the adaption work

## **Future Thoughts**