
Egeria React UI and the
architecture behind it

David Radley

Functional organisation

Functional organisation

The high level architecture

https://egeria.odpi.org/open-metadata-
publication/website/planning-guide/

Egeria React UI

Github

https://github.com/odpi/egeria-react-ui

Please star us if you haven’t

FE Developers with these skills, can become a
valued contributor quickly:
Javascript

Node
React
Web pack

https://github.com/odpi/egeria-react-ui

Checklist - before you run the UI

• Have you got Egeria platform running , in one of the following ways:
• Locally
• Kubenetes
• Docker Compose

• Work out which servers you need. I minimal scenario would be a
metadata server and a view server
• Work out which UI capability you want to use and configure the

appropriate View services and Access Services.

UI and view services

UI Capability View Service View service target

Tex Tex OMRS

Rex Rex OMRS

Dino Dino OMRS

Glossary Author Glossary author Subject Area OMAS

Server Author Server Author (not their yet) Admin server and platform services

Expect the following OMVS’s to be configured and started for a fully functioning UI.

Configuration and starting the presentation server

• In cra-client folder

• In cra-server folder

• In cra-client folder

• In cra-server folder

Production Development

Assuming you have a running Egeria including view services. Clone the Git repo
In cra-server folder. Create a .env file containing (you can use environment variables – remember to escape /):

EGERIA_PRESENTATIONSERVER_SERVER_coco={"remoteServerName":"cocoView1","remoteURL":"https://localhost:9443"}

npm install
npm install

npm install

npm start

npm install

npm run prod

npm run build

tenant Tenant endpoint

The UI part

Express based server, uses passport for authentication,
webpack for build and client side functional React
components with hooks, uses Carbon components. It is
tenant aware; tenant information is in environment variables
to indicate the View Service endpoint details.

View server is a tenanted view of metadata for UI
consumption. It is a type of OMAG Server (so is configured in
the usual way)

React UI architecture – presentation server

Passport

Browser

Login (limited)

resources

Rest calls

Served from file system

Proxies rest calls to a view
service

omvs call
View

Server

Access
Point

/
Metadata

server

omas call

Presentation server

React UI architecture – React part
Identification Context contains logged in user

Login

Frame
- Left nav
- UI shell
-routing

url
…login

All other urls Glossary Author

Tex

Rex

Dino

Server author

/coco/glossary-author/

React routing
url. è component

/coco/tex/

/coco/rex/

/coco/dino/

/coco/server-author/

Adding a new component
Identification Context contains user

Login

Frame
- Left nav
- UI shell
-routing

url
…login

All other urls Glossary Author

Tex

Rex

Dino

Server author

/coco/glossary-author/

React routing
url. è component

/coco/tex/

/coco/rex/

/coco/dino/

/coco/server-author/

Add New
Link

Add New
route

/coco/new-one/ New One

A new component
- Particular persona

- Pointing to a view service
- Can pick up the user from

the context.

Future
In time we would like the
logged in user to have an

associated profile, that would
determine the user interfaces
home screen, preferences and

capabilities. So there is a
relevant experience for the

user

Tex Rex Dino nested contexts

<InteractionContextProvider>
<RepositoryServerContextProvider>

<TypesContextProvider>
<InstancesContextProvider>

<GraphControls />
<DetailsPanel />
<DiagramManager />

...

Nested contexts works well when there is one
page with complex interactions between the
components

Wraps D3 graph

Glossary author url driven

tenantURL Glossary-author glossary-author segment

segmentBreadcrumb

Action
button

determines

Routes to component

params?

Writes URL

Benefits
-Clickable bread crumb
- Cut and paste url works

Node

Glossary author search screen anatomy
Bread crumb

Pagination

Chosen Node

Card view of nodes

Add action

Select to see more actions

Debounced filter Exact match

Create Wizard

Wizard

NodeInput

GlossaryNavigation

NodeReadOnly

Form for user to input values

Choose Glossary (for term and category)

Confirm and create

Child components props

User input
In callbacksState

Parent component

Validation

Controlled
Component

Intention is to move update and delete
To this model

Selected node actions

• Quick terms – quickly author Term names for innovation session
• Update – update the selected Node
• Delete – delete the deleted node
• Glove – visualize the selected node
• See the children of the selected node

Glossary author Glove

• video

Server Author

• Context driven wizard to author servers.

• Interesting to see how this positions with the operator. Likely this will
be used only in development to create configurations.

• Needs to move to use the view service

• Needs to pick up platform values from metadata

Where next?
• Core

• Bring in line with the latest core Egeria security artifacts, which ill be a pattern on how to customize security for an organization
• May require server author view to be enabled.

• Glossary author
• Finish the glossary author create and update wizards
• Create and update on relationships.
• Standardise icons, using the new repo.

• Server author
• How to position with operator
• View service
• Picking up platform values from metadata server e.g. security connector class name

• Community profile and the governance program
• Glossary author to pick up custom confidentiality etc classifications as defined by the governance program
• Enable the community profile to get a more personized UI.
• Reference data & Valid values

• Consider UI capabilities as required to grow the community: asset search, visualization, semantic assignment, collaboration.
• One experience across Polymer and React?

