
Workshop
10/14/2020

Welcome!

Disclaimer

All workshop presentations, SIG/WG sessions
will be recorded and made available publicly
afterwards.

Logistics

● Host of Zoom Meeting will share the slides on screen and record all
presentations.

● All participants will be muted except when presenting.
● Questions should be posted in the Slack “onnx-general”
● Please “raise hand” (Zoom feature) if you would like to speak and

engage in the discussion.

Goals for the Workshop

● Get the latest updates on ONNX - Processes, Roadmap
Releases, and SIGs/WGs

● Learn from the community and how ONNX is being used
● Share feedback on what is working (and what isn’t)
● Learn how to get more involved with ONNX Steering

Committee, SIGs and Working Groups

https://lfai.foundation/blog/2020/09/24/lf-ai-day-onnx-community-virtual-meetup-fall-2020/

Agenda -1

7:00 Welcome

7:05 ONNX SC Updates

7:25 Community Updates

9:05 Break

9:15 SIG Updates

9:55 Wrap Up

Sheng Zha (Amazon) Welcome
Logistics
Goals
Agenda
State of the State: ONNX Growth

Jacky Chen (Microsoft) Release 1.8

Prasanth Pulavarthi (Microsoft) Governance

Harry Kim (Intel) Roadmap

https://events.linuxfoundation.org/lf-ai-day-onnx-community-virtual-meetup-fall/program/schedule/

Agenda - 2

7:00 Welcome

7:05 ONNX SC Updates

7:25 Community Updates

9:05 Break

9:15 SIG Updates

9:55 Wrap Up

Patrick St-Amant (Zetane) Extract the Maximum Benefits of ONNX to Shorten Your
Development Cycle Time and Reduce Guesswork

Jianhao Zhang (OneFlow) ONNX at OneFlow

Morgan Funtowicz (Hugging Face) Efficient Inference of Transformers Models: Collaboration
Highlights Between Hugging Face & ONNX Runtime

Danilo Pau (ST Micro) Flows and Tools to Map ONNX Neural Networks on Micro-
controllers

Fabian Bause (Beckhoff
Automation)

Neural Automation: Fusion of Automation and Data Science

Faith Xu (Microsoft) ONNX Runtime Updates: Mobile, Quantization, Training, and
More

Jason Knight (OctoML) Apache TVM and ONNX, What Can ONNX Do for DL Compilers
(and vice versa)

Alexandre Eichenberger (IBM
Research)

ONNX Support in the MLIR Compiler: Approach and Status

Matteo Interlandi (Microsoft) Hummingbird

Neta Zmora (NVIDIA) Q/DQ is All You Need

https://events.linuxfoundation.org/lf-ai-day-onnx-community-virtual-meetup-fall/program/schedule/

Agenda - 3

7:00 Welcome

7:05 ONNX SC Updates

7:25 Community Updates

9:05 Break

9:15 SIG Updates

9:55 Wrap Up

Ashwini Khade (Microsoft) & Ke Zhang (Alibaba) Architecture/Infrastructure SIG

Michał Karzyński (Intel) & Emad Barsoum (Microsoft) Operators SIG

Chin Huang (IBM) & Guenther Schmuelling (Microsoft) Converters SIG

Wenbing Li (Microsoft) & Vinitra Swamy (EPFL) Model Zoo/Tutorials SIG

https://events.linuxfoundation.org/lf-ai-day-onnx-community-virtual-meetup-fall/program/schedule/

State of the state

Engagement & usage (compared to 4/9/20)

1734
PRs

174
Contributors

9.1k
Stars

1.6k
Forks

80
Papers

15% 12% 12%

14%

36
Models in Zoo

16%41%

1773
Dependent

Repos

300k
Monthly

Downloads

Support
LibSVM

Creation/
Manipulation

Run/
Compile

Visualization/
Test Tools

NEW

NNOIR

NEW

Coming soon: ONNX 1.8 (Release mgr: Jacky Chen)

ONNX v1.8 comes with exciting new and enhanced features!
● Windows conda package will be available for the upcoming 1.8 Release (last for v1.1.1)
● Adding Differentiable tags to make Gradient operator better defined
● Remove GraphCall and eliminate the need to implement GraphCall
● Large model (>2GB model) support added for checker and shape_inference
● Graph level shape inference fixes to patch the IR gap introduced since IR version 4
● Node level shape inference fixes for operators
● More operators are supported by version converter
● Add serialization for inputs and outputs of Sequence and Map data types
● Opset 13

○ Extend ControlFlow to allow Sequence type for inputs and outputs
○ Support per-axis scaling for quantizing and dequantizing of tensors
○ Add bfloat16 support

Thank you everyone for your countless hours of work!

ONNX 1.8 Release Schedule

1. Week of Validation (10/13~)
a. Cut ONNX Release branch
b. ONNX Release candidate published in PyPI test
c. Validation in ONNXRuntime
d. Community validation

2. Week of Release (10/22~): Ready for ONNX 1.8 Release

Governance
(prasanth)

ONNX open governance update

Steering Committee
https://github.com/onnx/steering-committee

Prasanth Pulavarthi (MS)
Harry Kim (Intel)
Jim Spohrer (IBM)
Sheng Zha (AWS)
Joohoon Lee (Nvidia)

Special Interest Groups (SIGs)
https://github.com/onnx/sigs

Architecture & Infra: Ashwini Khade, Ke Zhang

Operators: Michał Karzyński, Emad Barsoum

Converters: Chin Huang, Guenther Schmuelling

Model Zoo & Tutorials: Wenbing Li

Working Groups (WGs)
https://github.com/onnx/working-groups

Training: Svetlana Levitan

https://github.com/onnx/steering-committee
https://github.com/onnx/sigs
https://github.com/onnx/working-groups

ONNX open governance changes

CLA -> DCO:
DCO bot already enabled on all repos under ONNX. Will be made required by 10/19 (already
required on main onnx repo). CLA will be turned off once license files updates.

To pass DCO bot, all commits in PRs need to be signed.
Easy to sign: if using command line, git commit -s
If using web UI or other tools, include “Signed-off-by: Humpty Dumpty <humpty.dumpty@example.com>” in the
commit message (for each commit, not for the PR). Make sure email matches the account you
are submitting with.

CONTRIBUTING.md will be updated with tips

Updated licensing: All code repos under ONNX will be Apache 2. Prior contributions will be
reclassified with contributing organization sign-off. Document repos remain CCL.

mailto:humpty.dumpty@example.com

ONNX Community Forums

GitHub Discussions - new GitHub feature now enabled on onnx/onnx repo, will be enabled on
other repos soon.
Good for technical questions and discussions that don’t work well as Issues.
Issues can be converted to Discussions, but not vice versa.

Gitter - ONNX rooms will be deprecated by 10/19.
Please switch to GitHub Discussions and LF AI Slack

Slack - ONNX channels in LF AI Slack. Channels exist for each SIG and WG
Sign up for LF AI Slack and then join the ONNX channels

Roadmap
(harry)

ONNX roadmap discussions

Feedback from community

Impact analysis

Cost analysis

onnx.ai/roadmap

onnx.ai/impact

6 weekly
community
discussions

Suggested features & their rated impact
Reduce # of ops

Simplify function
definition

Expand model test to all
models on Model Zoo

Improve tutorials on Model Zoo

Shape inference
(detect error via model checker)

Improve support for large models

Shape inference
(reorg for easier debugging & testing)

Improve model checker & protobuf
loading to prevent sudden termination

Include quantized models in Zoo

PyData alignment (numpy op definitions)

Introduce format (interface and coding style)
for op reference implementation

Improved error handling /
exception free

Med High

Operator

Model
Zoo

Arch/
Infra

Questions?

Wrap up!

Thank you ...

● Recording of today’s workshop and other applicable content will be
shared via ONNX-Announce mailing list when available.

● Please stay engaged and continue to contribute to ONNX and ONNX
related projects.

● Remember to use the following ONNX resources:
○ Website: https://onnx.ai/
○ GitHub: https://github.com/onnx
○ Slack: (join https://slack.lfai.foundation - email, password, then find #onnx-general)
○ Calendar: https://onnx.ai/calendar
○ Mailing List: https://lists.lfai.foundation/g/onnx-announce

https://onnx.ai/
https://github.com/onnx
https://slack.lfai.foundation
https://onnx.ai/calendar
https://lists.lfai.foundation/g/onnx-announce

Community
Presentations

Extract the maximum benefits of ONNX
to shorten your development cycle time
and reduce guesswork

Patrick St-Amant
Co-founder and CTO
Zetane Systems

The content of this presentation is not a contribution under the CLA

23 Slides/9 minutes

Bio

Co-founder and CTO
Zetane Systems

PhD studies: Category theory and logic
MSc: Foundations of mathematics and computer science
BSc: Mathematics and Physics
Institute for Advanced Study visitor

Zetane Systems
Based in Montreal
Team: software developers, data scientists, simulation, 3D rendering
Recent product release
Industry agnostic

Our software is a 3D engine with a Python API
Does brain imaging, but for artificial neural networks

To know more:
zetane.com
docs.zetane.com

For scientists and developers
Lack of visibility into how algorithms work
resulting in wasting valuable time “guessing”
how to debug or optimize models.

For business leaders
Lack of visibility into how algorithms will
impact business, operations and clients in the
“real world” and a lack of understanding of
risks resulting in slow adoption

For subject matter experts
Lack of involvement in the ML process
and no understanding of AI algorithms,
code, and libraries resulting in lack of
trust in what scientists are proposing.

https://www.analyticsinsight.net/what-is-inside-the-black-box-of-artificial-intelligence

Important problem for industrial adoption

https://medium.com/codait/contribute-to-the-open-neural-network-exchange-onnx-5cfff6889761

InputsData flows in ONNX model

import zetane as ztn

Launch the Zetane Engine
zcontext = ztn.Context().launch()

Create model to send to the engine
zmodel = zcontext.model()

ONNX
zmodel.onnx(onnx_path).inputs(input_path)

Update the model and send to the engine
zmodel.update()

Keras
zmodel.keras(model).update()

Pytorch
zmodel.torch(torch_model, torch_inputs)

Directly from the Python workflow

ONNX Model Zoo

https://github.com/onnx/models/tree/master/vision/body_analysis/emotion_ferplus

ONNX graph and API components

Python-Zetane API
components:

Ø Image
Ø Pointcloud
Ø 3D meshes
Ø Numpy
Ø Video
Ø Text
Ø Metric
Ø Chart
Ø Panel
Ø UI elements

Tensors
one-click access, visualizations and statistics

Train
Model

Metrics
only

Intuition
or guess

Adjust
model

Train
Model

Metrics +
data +

model +
tensors

Deeper
insights and

decisive
strategies

Adjust
model

Reduce guesswork and shorten dev time

Focus on the interaction
between the data and model

More decisive model
improvements

Stop training early

Less wasted time retraining

Increase trust and safety

Autonomous train use case

https://www.eeri.org/2008/05/wenchuan/02-12/

Conv Relu

Inference dashboard

Focus
on
outliers

xAI dashboard

Transparent and non-black box ONNX

q Make ONNX tangible and accessible to many

q Create snapshots from the ONNX model zoo

q Help the growth of the ONNX model zoo

q Engage stakeholders

Monitor and debug models in production

• Trigger events

• Record snapshots during inference (or training)

• Inspect snapshots in the Zetane Engine

• React quickly and understand how to improve your models

YOLOv3

We recently launched the Zetane Engine

The community Zetane Viewer is coming soon

Patrick St-Amant
patrick@zetane.com
https://www.linkedin.com/in/patrick-st-amant

To know more:
zetane.com
docs.zetane.com

Thank you very much!

Q&A

The content of this presentation is not a contribution under the
CLA

ONNX at OneFlow

Jianhao Zhang

OneFlow Inc.

13 Slides/9 minutes

About me

● GitHub: daquexian
● A developer at OneFlow Inc.
● An active contributor from ONNX community, a member of operator SIG
● ONNX-related work:

○ ONNX <-> OneFlow conversion (today’s presentation)
○ onnx-simplifier
○ onnx/optimizer
○ resize and softmax op spec

● Also a presenter at ONNX workshop in Shanghai last year (about one of my previous work, integration of
Android NNAPI and ONNX Runtime)

What is OneFlow

Oneflow is a brand-new open-source training framework focusing on distributed training. It
makes distributed training on multi-machines and multi-devices as simple as on single device.

● Perfectly support container platforms(k8s & docker)
● Handle large models easily
● Almost zero runtime overhead & linear speedup
● Support multiple deep learning compilers (XLA, TensorRT etc)
● Support automatic mixed precision

OneFlow Benchmark

OneFlow Benchmark

The detailed benchmark report is public at
https://github.com/Oneflow-Inc/DLPerf!

https://github.com/Oneflow-Inc/DLPerf

“Sounds Great, but..”

Most DL researchers/developers are familiar with
TensorFlow/PyTorch/MXNet.

Even though OneFlow is faster, there is a cost to
migrate their codecase (mostly the model) to
OneFlow.

Solution: Convert TF/PT/MXNet to OneFlow via ONNX

Model to Model Conversion

import torchvision as tv
import oneflow as flow
import oneflow.typing as tp

pytorch_resnet18 = tv.models.resnet18()

@flow.global_function(type="train")
def job(x: tp.Numpy.Placeholder(bs, 3, 224, 224)) -> tp.Numpy:

y = flow.from_pytorch(pytorch_resnet18, x)
lr_scheduler = flow.optimizer.CosineScheduler(0.01, 90)
flow.optimizer.SGD(lr_scheduler).minimize(y)

return y

Model to Model Conversion

import torchvision as tv
import oneflow as flow
import oneflow.typing as tp

pytorch_resnet18 = tv.models.resnet18()

@flow.global_function(type="train")
def job(x: tp.Numpy.Placeholder(bs, 3, 224, 224)) -> tp.Numpy:

y = flow.from_pytorch(pytorch_resnet18, x)
lr_scheduler = flow.optimizer.CosineScheduler(0.01, 90)
flow.optimizer.SGD(lr_scheduler).minimize(y)

return y

Model to Model Conversion

import torchvision as tv
import oneflow as flow
import oneflow.typing as tp

pytorch_resnet18 = tv.models.resnet18()

@flow.global_function(type="train")
def job(x: tp.Numpy.Placeholder(bs, 3, 224, 224)) -> tp.Numpy:

y = flow.from_pytorch(pytorch_resnet18, x)
lr_scheduler = flow.optimizer.CosineScheduler(0.01, 90)
flow.optimizer.SGD(lr_scheduler).minimize(y)

return y

Code to Code conversion (WIP)

OneFlow code
x2=flow.layers.conv2d(x1, filters=64,

kernel_size=7, strides=2, padding=3)
x3=flow.layer.batch_normalization(x2)
x4=flow.nn.relu(x3)
x5=flow.nn.max_pool2d(x4, ksize=3, strides=2, padding=1)
x6=flow.layers.conv2d(x5, filters=64,

kernel_size=3, padding=1)
.....

PyTorch code
import torchvision as tv
model = tv.models.resnet18()

Also, ONNX Helps us Deploy Models on Mobile

As a startup team, we do not have the
bandwidth to implement our own mobile
inference framework.

Again, ONNX helps us a lot. We convert our
model to the existing mobile inference
frameworks, like ncnn from Tencent, via
ONNX.

Thanks!
Our GitHub: https://github.com/Oneflow-Inc

https://github.com/Oneflow-Inc

Efficient inference of transformers models
Collaboration highlights between Hugging Face & ONNX Runtime

Morgan Funtowicz
ML Engineer

61

7 Slides/9 minutes

Hugging Face OSS

• 25+ employees in 2 offices (NYC & Paris)
• Raised 15 M$ in Serie B

transformers (+34,000)
tokenizers (+3,800)
datasets (+4,200)

• Community model hub with more than 3,000 models
• More than 3To of models stored in the cloud
• More than 5 models uploaded each day

U+1F5FD

62

Collaboration with ONNX Runtime

• Looking for a solution to export from PyTorch & TensorFlow.

• Initial integration with transformers to easily export wide variety of our
models (25 architectures, from BERT to Reformer & more recently
RAG).

• Leverage ONNX Runtime optimizations to speed-up inference on
variety of hardwares and platformes.

• Enable quantization for efficient inference.

63

Collaboration with ONNX Runtime

64

More information: Accelerate your NLP pipelines using Hugging Face Transformers and ONNX
Runtime

https://medium.com/microsoftazure/accelerate-your-nlp-pipelines-using-hugging-face-transformers-and-onnx-runtime-2443578f4333

Collaboration with ONNX Runtime

65

More information: Faster and smaller quantized NLP with Hugging Face and ONNX Runtime

https://medium.com/microsoftazure/faster-and-smaller-quantized-nlp-with-hugging-face-and-onnx-runtime-ec5525473bb7

Potential direction

• Integrate data processing operators such as tokenization from our Rust
backed tokenizers library

• Supports exporting end-to-end NLP pipelines

• PoC new training features from ONNX Runtime

• PoC for inferencing such models with such various architectures

66

Conclusion

• ONNX integration has very good perspectives at Hugging Face both for
open source projects & internal.

• Well received by the transformers community, especially for the ones
looking to put models in production.

• Issues and PRs continues to improve the overall coverage, for instance
with recent T5 support.

67

13 Slides/9 minutes

§ Speaker: Fabian Bause
§ ONNX Community Virtual Workshop

Neural Automation: Fusion of
Automation and Data Science

11 Slides/9 minutes

Sales worldwide 2019: € 903 million

§ Fabian Bause
§ PhD in Electrical Engineering
§ Product Manager TwinCAT at Beckhoff

since 01/2016
§ Technological responsibilities

- Machine Learning
- Integration of MATLAB and Simulink
- Integration of LabVIEW
- Signal Processing Libraries

About Beckhoff and myself

Quick look into the Beckhoff component portfolio

Motion

Automation
(TwinCAT)

IPC

I/O

… what is this double cat thing???
The Windows Control And Automation Technology - TwinCAT

PC system running Windows OS

TwinCAT 3 Engineering Environment based on Visual Studio®

System Manager
Configuration
– I/O
– PLC
– C/C++
– NC
– NC I
– CNC
– Safety
– andere

Programming

IEC 61131 Object-
oriented
extension

IEC Compiler

Non-real-
time

C#.NET

Real time

C/C++

MATLAB®/
Simulink®

Simulink
coder™

Microsoft C Compiler

Third-party
programming
tool

C/C++

Beckhoff IPC running Windows or TC/BSD

Ethernet

What do Beckhoff customers do with all these components?
They build machines for…

Food Industry

Semiconductor Manufacturing Medical Engineering Energy Industry

Warehouse | distribution logistics Textile Industry

Packaging Automotive

Building Automation

Standard TcCOM in TwinCAT
§ real-time inference engine for ML models
§ PLC, C++ and cyclic caller interface
§ direct access to EtherCAT slaves, i.e. actuators and

sensors
§ easy ML model update at runtime
ONNX support
§ fast growing standardized file format for ML
Non-blocking parallelization
§ parallel use of one TcCOM object by multiple tasks
Scalable performance with PC-based control
§ Highly optimized performance by using latest SIMD

extensions

Integrating an inference engine into a machine control

Fieldbus

TwinCAT transport layer – ADS

TwinCAT Object Manager

Tw
in

C
AT

 re
al

-ti
m

e
co

re

Tc
C

O
M

PLC

Tc
C

O
M

PLCC++
modules

Tc
C

O
M

PLCCNC

Tc
C

O
M

PLCSafety
FBD

Tc
C

O
M

PLCSimulink®

modules

Tc
C

O
M

ML
Runtime

Tc
C

O
M

PLCNC Tc
C

O
M

ML
Runtime

TwinCAT Automation Device Driver – ADD

Tc
C

O
M

PLCML
Runtime

TC configuration Debugging

Task

Task

Task

Task

Task

Task

Task

Call

Call

TwinCAT 3 runtime

Call

Tc
C

O
M

PLCSafety

Learned model file

Why ONNX is important for Beckhoff?

Data

Business
Understanding

Data
Understanding

Data
Collection

Data
Preparation

Modeling

Evaluation

Deployment

Machine Builder

Data recording products

Inference Engine

Test and Validation products

3rd Party

Generic Interface
(Data)

Generic Interface
(Model)

Data Science Co.
Data Science dept.

§ ONNX enables seamless workflows
- Data Scientists do not need to work into PLC specific

languages
- Automation Engineers and Data Scientists work together while

staying in their standard development environment
§ ONNX enables for new business models

- Some machine builders establish own Data Science
departments, others search for partnerships

- Maintenance of data driven models during a 20yrs+ runtime of
a machine

§ Conjunction of Data Science and Automation is a huge
market
- Path planning in product transport*, robotics,

hand-eye-coordination, …
- Yield enhancement, RUL prediction, testing, …

Why ONNX is important for Beckhoff?

3rd Party

Generic Interface
(Data)

Generic Interface
(Model)

*see www.beckhoff.ai

http://www.beckhoff.ai/

Use Case: MLP for optimized motion planning

Contact: f.bause@beckhoff.com

Thank You!

© Beckhoff Automation GmbH & Co. KG

All images are protected by copyright. The use and transfer to third parties is not permitted.

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and
XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be
trademarks whose use by third parties for their own purposes could violate the rights of the owners.

The information provided in this presentation contains merely general descriptions or characteristics of performance which in case of actual
application do not always apply as described or which may change as a result of further development of the products. An obligation to provide
the respective characteristics shall only exist if expressively agreed in the terms of contract.

Phone: +49 5246 963-0
E-mail: info@beckhoff.com
Web: www.beckhoff.com

Beckhoff Automation GmbH & Co. KG
Headquarters
Huelshorstweg 20
33415 Verl
Germany

Contact

UPDATE (October 2020)
Mobile, Training,

Quantization

Faith Xu | AI Frameworks @ Microsoft

18 Slides/9 minutes

ONNX Runtime 1.5 Release
Highlights: Minimal Builds, Training, Quantization

Minimal Builds
Mobile and Embedded scenarios

ONNX Runtime Minimal Build for Mobile
● Android, iOS, Linux
● X86, ARM
● Same API as existing ORT builds
● Supports all ONNX models
● Model-specific ORT build provides minimal footprint for inferencing on device
● Uses an internal model format to minimize the build size for usage in mobile and

embedded scenarios

inference on device

Convert model to ONNX

ML.NET

Optimization for
Mobile

model.onnx

Optimized model file Operator config file

Build onnxruntime pkgmodel.ort

Size for ONNX Runtime Mobile

*TfLite package size from: Reduce TensorFlow Lite binary size
†ONNX Runtime full build is 7,546,880 bytes

0

100

200

300

400

500

600

ARM64
/A

nd
roi

d

ARM64
/iO

S

X86
 W

ind
ow

s

X86
 Li

nu
x

C
om

pr
es

se
d

Si
ze

 (i
n

KB
)

ONNX Runtime Mobile package

ORT-Mobile base + MobileBERT

+ MobilenetSSD + MobileBERT + MobilenetSSD

https://www.tensorflow.org/lite/guide/reduce_binary_size

Training Acceleration
Transformer models

ONNX Runtime Training (Public Preview)

● Seamless integration with existing training
frameworks for accelerated training and
fine tuning of large transformer models

● Incorporates latest algorithms and
techniques such as DeepSpeed/ZeRO
and Parasail/Adasum

● Integrates with GPU for distributed
training

PyTorchFrontend

Backend

IR ONNX

ONNX Runtime

TF/Keras Other

Accelerator
SDKs CPU GPU FPGA VPU DML

Graph Compiler (MLIR)

NPU

MSFT and 3P innovations

MSR
DeepSpeed

MSR
Parasail

Nvidia
Megatron

Distributed Execution

Usage of ORT Training at Microsoft

Team Scenario /
Model Improvement

Office
services

Pre-training
TuringNLR

From 4 days to ~2 days
(1.4x higher
throughput)

Bing Ads
Pre-training
RoBERTa-XL as
base model

From 8 days to 4.5
days
(1.4x higher
throughput)

Office apps
Fine-tuning
GPT-2 for word
prediction

Now able to train; stock
PyTorch could not train
with data parallelism

Visual Studio
Pre-training
GPT-2 Medium
for IntelliSense

From 8 days to 6.5
days (1.19x higher
throughput)

Quantization

Latency improvement

Model size reduction

Int8 quantization for 4x
reduction in size

Model size reduction

Int8 quantization for 4x
reduction in size

Half the size of
quantized PyTorch
model

Model size reduction

Int8 quantization for 4x
reduction in size

Half the size of
quantized PyTorch
model

…with minimal accuracy tradeoff

Same accuracy as
PyTorch

Slightly higher F1 score
(precision + recall)

Blog post with more details and E2E Notebook

https://medium.com/microsoftazure/faster-and-smaller-quantized-nlp-with-hugging-face-and-onnx-runtime-ec5525473bb7
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/quantization/notebooks/Bert-GLUE_OnnxRuntime_quantization.ipynb

Other updates

General
○ ONNX 1.7 (opset 12)
○ Function expansion support
○ Binary Size: Reduced Ops kernel, minimal build

for mobile and embedded usage
Performance

○ Transformer models (DistilBERT, GPT2, BERT)
○ Improved threadpool support for better

resource utilization
○ Improved performance for inferencing large

batch sizes for traditional ML models
APIs and Packages

○ IO Bindings
○ Allocator sharing between sessions (memory

utilization)
○ Java API and packages on Maven Central
○ NodeJS API
○ ARM64 Linux Python package

Windows ML
○ UWP apps targeting Windows Store deployment,

.NET and .NET Framework applications

Execution Providers
○ Select Eps buildable as separate dll (TRT, DNNL,

others to come)
○ CUDA: 10.2/cuDNN 8.0, CUDA 11 buildable
○ TensorRT: 7.1
○ OpenVINO: 2020.4
○ DirectML: operator coverage and performance

improvements, package available on Nuget
○ NNAPI: rewritten for broader Android support

with more data type and operator coverage, CPU
fallback, and improved performance

○ AMD MiGraphX: additional data type and
operator support, graph optimizations

○ ARM NN
○ Rockchip NPU
○ Xilinx FGPA Vitis-AI

Automate efficient AI/ML ops through a unified software foundation.

jknight@octoml.ai

Apache TVM and ONNX
What can ONNX do for DL Compilers (and vice versa)?

Jason Knight - CPO

17 Slides/9 minutes

mailto:jknight@octoml.ai

Agenda
Intro to TVM

Cool results (TVM + ONNX)

How does it work?

OctoML’s wishlist for ONNX

111

… and in 10 minutes …
Let’s go!

An exploding ecosystem makes deployment painful

Cambrian explosion of
HW backends

Rapidly evolving ML
software ecosystem

112

TVM: Bridging the gap as a DL compiler and runtime

113

Open source, optimization framework for deep learning.

Backends for x86, nVidia/CUDA, AMD, ARM, MIPS, RISC-V, etc

ML-based
Optimizations

Cut capital and
operational ML
costs

Reduce model time-to-
market

Build your
model once,
run anywhere

TVM is an emerging industry standard ML stack

114

Every “Alexa” wake-up today across all
devices uses a model optimized with TVM

Bing query understanding: 112ms (Tensorflow) -> 34ms (TVM).
QnA bot: 73ms->28ms (CPU), 10.1ms->5.5ms (GPU)

“TVM is key to ML Access on Hexagon” - Jeff Gelharr, VP Technology

“[TVM enabled] real-time on mobile CPUs for free...We are excited
about the performance TVM achieves.” More than 85x speed-up for
speech recognition model.

Open source
~428+ contributors from
industry and academia.

The power of
TVM + ONNX
(AKA Results)

115

116

Performance: TVM on x86

20 core Intel-Platinum-8269CY fp32 performance data from https://arxiv.org/pdf/2006.06762.pdf

AutoTVM 2.0AutoTVMTensorFlowPyTorc
h

https://arxiv.org/pdf/2006.06762.pdf

117

Performance: TVM on GPU

V100 fp32 performance data from https://arxiv.org/pdf/2006.06762.pdf

AutoTVM 2.0AutoTVMTensorRT-
TF

TensorFlowPyTorc
h

https://arxiv.org/pdf/2006.06762.pdf

118

Performance: TVM on ARM

Four core Cortex-A53 @ 1.4GHz fp32 - https://arxiv.org/pdf/2006.06762.pdf

AutoTVM 2.0AutoTVMTensorFlow Lite

Four core Cortex-A72 @ 1.5GHz fp32 - internal data

https://arxiv.org/pdf/2006.06762.pdf

Case Study: 50% reduction in Cloud NLP inference
costs

2x lower cost on
AMD EPYC CPU

Best of both worlds

120

Not enough time!

121

● TensorCore performance (better than cuBLAS)

● Classical ML (better than XGBoost and RAPIDS)

● uTVM for TinyML - ML for microcontrollers

● Int{8,4,3,2,1} and posit quantization support

● ML in your browser - WebGPU and WASM as TVM backends

● … and more!

How does it work?

122

AutoTVM Overview

Automatically adapt
to hardware type
by learning

123

ONNX Support in the MLIR Compiler
Approach and Status

Alexandre Eichenberger

Collaborative effort from
IBM Watson/Tokyo Research Labs

and a growing number of external contributors.

10 Slides/9 minutes

Presenter
Alexandre Eichenberger
Principal Research Staff Member
IBM T.J. Watson Research Center
alexe@us.ibm.com

Hired in 2001 to help program the IBM/Sony/Toshiba PlayStation 3, I have
enjoyed doing research at IBM in Instruction-Level Parallelism, SIMD &
thread level parallelism. The last few years, I have worked on supporting
OpenMP on our supercomputers, from BG/Q to Coral machines. More
recently, I am looking into supporting Deep Neural Networks on a wide
range of machines. Just like OpenMP is a great standard to exploit
parallelism for a wide range of supercomputers, ONNX is a great standard to
support a wide range of frameworks for Deep Neural Networks and related
AI tasks.

Multi-Level Intermediate Representation (MLIR)

• Goals of MLIR.
• Significantly reduce the cost of building domain specific compilers.
• Connect existing compilers together through a shared infrastructure.
• Part of LLVM compiler & governance.

Affine

LinAlg

Standar
d

dialects

FLANG
(LLVM Fortran)

NPComp
(Numerical Python Compiler)

TensorFlow (TF) &
TensorFlow Runtime (TFRT)

ONNX MLIR
Th
e
im
ag
e
pa
rt
wit
h
rel
ati
on
shi
p
ID
rId
3
wa
s
no
t
fo
un
d
in
th
e
fil
e.

CPU Optimized
Computations

GPU Optimized
Computations

Accelerator Optimized
Computations

custom
backend

CPU
binar

y

GPU
binar

y

accel
erato

r
binar

y

• Consumes ONNX model and produce inference executables using 2 new
dialects:

• ONNX: representation of native ONNX operations,
• KRNL: representation to lower ONNX to loops.

Architecture of ONNX-MLIR Compiler

Import with
ONNX

Converters

PyTorch

Other Framework
with ONNX converter

Th
e
im
ag
e
pa
rt
wit
h
rel
ati
on
shi
p
ID
rId
2
wa
s
no
t
fo
un
d
in
th
e
fil
e.

TensorFlow

LLVM
Backend

ONNX KRNL

Affine Standard

ONNX - MLIR

Executable

LLVM

Integration of ONNX Specs within MLIR Framework

• Ingest ONNX Specs directly into MLIR.
• Script transforms ONNX Specs into LLVM TableGen format.
• Describes ONNX operations for MLIR (inputs, attributes, outputs, types).
• Drives validation and shape inference.

ONNX
Specs

ONNX MLIR
Dialect

LLVM TableGen C++

Inference
rules

Definitions
of ONNX
objects

MLIR tools
Pytho
n
script

ONNX Specs

Shape
inference

pass

Validation
pass

Pattern-Matching Transformations in MLIR

• High level description of ONNX to ONNX transformations.
• E.g MatMul and Add into a GEMM operation.

LLVM TableGen

Rewrite rules

C++

ONNX
Dialect

Rewrites
MLIR tools

%0 = "onnx.MatMul"(%a0, %a1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<10x10xf32>
%1 = "onnx.Add"(%0, %a2) : (tensor<10x10xf32>, tensor

%0 = "onnx.Gemm"(%a0, %a1, %a2)
{ alpha = 1.000000e+00, beta = 1.000000e+00, transA = 0, transB = 0} :
(tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<10x10xf32>

Pat<(ONNXAddOp (
ONNXMatMulOp:$res $m1, $m2),
$m3),

(ONNXGemmOp $m1, $m2, $m3,..) >

• Output representation:
• all shapes inferred, propagated, and verified,
• all parameters verified and normalized.

Example: MNIST model to ONNX dialect

ONNX
Model

onnx-mlir
--EmitONNXIR

mnist.onnx

func @main_graph(%arg0: tensor<1x1x28x28xf32>, %arg1: tensor<8x1x5x5xf32>,
%arg2: tensor<8x1x1xf32>, %arg3: tensor<16x8x5x5xf32>, %arg4: tensor<16x1x1xf32>,
%arg5: tensor<2xi64>, %arg6: tensor<16x4x4x10xf32>, %arg7: tensor<2xi64>,
%arg8: tensor<1x10xf32>) -> tensor<1x10xf32> {

%0 = "onnx.Constant"() { sparse_value = [], value = [256, 10]} : () -> tensor<2xi64>
%1 = "onnx.Reshape"(%arg6, %0) : (tensor<16x4x4x10xf32>, tensor<2xi64>) -> tensor<256x10xf32>
%2 = "onnx.Conv"(%arg0, %arg1, null)

{ auto_pad = ”NOT_SET", group = 1, kernel_shape = [5, 5], strides = [1, 1] dilations = [1, 1] } :
(tensor<1x1x28x28xf32>, tensor<8x1x5x5xf32>) -> tensor<1x8x28x28xf32>

%3 = "onnx.Add"(%2, %arg2) : (tensor<1x8x28x28xf32>, tensor<8x1x1xf32>) -> tensor<1x8x28x28xf32>
[…]

}

Motivation for KRNL Dialect

• Dialect used to lower ONNX operations to loop code.
• Designed for customizable optimizations such as tiling, fusion, parallelization.

• It is hard to revert an optimization, except if…
• Instead of performing the optimization, we just record it (i.e. build a recipe of optimizations).
• And can alter it later as needed by other optimization.

• Example:
• Try to fuse 2 kernels that were tiled by different amount:

• Make them compatible by simply edit B’s recipe from [2, 2] -> [5, 5]
• Greater freedom and flexibility for compilers to traverse the schedule space!

The image part with relationship ID rId2 was not found
in the file.

The image part with relationship ID rId2 was not found
in the file.

A: blocks of 5x5 B: blocks of 2x2

ONNX-MLIR Runtime Interface

• C API.
• invoked using

run_main_graph function.

• Python API.
• use execution session,
• input/ouput with numpy,
• thanks @gperrotta.

Get Involved

• Big thanks.
• to the 15+ external contributors.

• Learn more.
• Code: https://github.com/onnx/onnx-mlir
• Additional documentation: http://onnx.ai/onnx-mlir

• Status.
• Support 50+ commonly used ONNX operations.
• Can compile mnist, resnet to LLVM.

• Actively prototyping.
• ONNX, KRNL & buffer optimizations.
• ONNX-ML support.

https://github.com/onnx/onnx-mlir
http://onnx.ai/onnx-mlir

Auto-scheduling Overview

Widens search space
even further than
AutoTVM 1.0

134
Ansor: Generating High-Performance Tensor Programs for Deep Learning Zheng L, et al.
2020 https://arxiv.org/pdf/2006.06762.pdf

...

https://arxiv.org/pdf/2006.06762.pdf

OctoML’s wishlist for
ONNX

135

15 Slides/9 minutes

We wish ONNX had…

136

● Even broader op coverage (eg EmbeddingBag)
● Broader non-ML (but adjacent) support:

○ More classical ML
○ GCNN/DGL
○ Graph workloads (GraphBLAS, Metagraph)

And on the “pie-in-the-sky” list:
● Framework integrations

○ PyTorch: so we don’t have to deal with torchscript
○ MLIR dialect so we can easily plug into TensorFlow (for runtime JIT)

● Quantization-aware standardization
○ For eg: canonicalization of models coming out of Quantization-aware-training pipelines

Thanks!

Compiling Traditional ML Pipelines into
Tensor Computations for Unified
Machine Learning Prediction Serving

,

Outline
• Motivate why model prediction for Traditional ML is an important problem

• Briefly introduce how classical models can be compiled into tensor
operations

• Project status

Motivation

Specialized Systems have been developed (mostly focus on neural
networks)

Support for traditional ML methods is largely overlooked (widely used in
practice because state of the art on tabular data)

Traditional ML Models

2019 Kaggle Survey: The State of Data Science & Machine Learning Data Science throw the looking glass: https://arxiv.org/abs/1912.09536

https://arxiv.org/abs/1912.09536

A compiler translating traditional ML models into tensor
computations for unified ML prediction serving

Benefits:
(1) Exploit the already available DNN runtimes
(2) Exploit current (and future DNN) optimizations
(3) Seamless hardware acceleration
(4) Significant reduction in engineering effort

Hummingbird

• Traditional ML models are composed by: featurizers and ML models

• Each featurizer is defined by an algorithm
• e.g., compute the one-hot encoded version of the input feature

• Each trained model is defined by a prediction function
• Prediction functions can be either algebraic (e.g., linear regression) or

algorithmic (e.g., decision tree models)
• Algebraic models are easy to translate: just implement the same formula in

tensor algebra!

Traditional ML Operators

Translating Trees

𝕩! > 5.1

𝕩 ∈ ℝ"

T

𝕩! > 2.41
0

𝕩# > 1.8 𝕩$ > 0.4

2
0

3
0

5
0

4
0

F

𝑛!

𝑛" 𝑛#
𝑛$

𝑙!

𝑙" 𝑙$

𝑙# 𝑙%

Internal node: 𝑛∗
Leaf node: 𝑙∗

Translating Trees
𝕩#

𝕩&

𝕩!

𝕩'

𝕩$

𝕩"

𝑛!

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝑛"

𝑛$

𝑛#

𝑙!

𝑙"

𝑙$

𝑙#

𝑙%

𝑙𝑣 =
10
20
⋮
50

𝑛∗, 𝑙∗ ∈ [0,1]

𝕩! > 5.1

𝕩 ∈ ℝ"

T

𝕩! > 2.41
0

𝕩# > 1.8 𝕩$ > 0.4

2
0

3
0

5
0

4
0

F

𝑛!

𝑛" 𝑛#
𝑛$

𝑙!

𝑙" 𝑙$

𝑙# 𝑙%

Translating Trees
𝕩#

𝕩&

𝕩!

𝕩'

𝕩$

𝕩"

𝑛!

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝑛"

𝑛$

𝑛#

𝑙!

𝑙"

𝑙$

𝑙#

𝑙%

𝑙𝑣 =
10
20
⋮
50

𝑛∗, 𝑙∗ ∈ [0,1]

𝕩! > 5.1

𝕩 ∈ ℝ"

T

𝕩! > 2.41
0

𝕩# > 1.8 𝕩$ > 0.4

2
0

3
0

5
0

4
0

F

𝑛!

𝑛" 𝑛#
𝑛$

𝑙!

𝑙" 𝑙$

𝑙# 𝑙%

Evaluate all conditions together

Translating Trees
𝕩#

𝕩&

𝕩!

𝕩'

𝕩$

𝕩"

𝑛!

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝑛"

𝑛$

𝑛#

𝑙!

𝑙"

𝑙$

𝑙#

𝑙%

𝑙𝑣 =
10
20
⋮
50

𝑛∗, 𝑙∗ ∈ [0,1]

𝕩! > 5.1

𝕩 ∈ ℝ"

T

𝕩! > 2.41
0

𝕩# > 1.8 𝕩$ > 0.4

2
0

3
0

5
0

4
0

F

𝑛!

𝑛" 𝑛#
𝑛$

𝑙!

𝑙" 𝑙$

𝑙# 𝑙%

Evaluate all conditions together

Evaluate all paths together

Translating Trees

• Random forest, boosting, …

output

𝕩!

𝕩"

𝕩#

𝕩$

𝕩%

𝕩&

𝑛!

+1

𝑛"

𝑛#

𝑛$

𝑙!

𝑙"

𝑙#

𝑙$

𝑙%

𝕩!

𝕩"

𝕩#

𝕩$

𝕩%

𝕩&

𝑛!

+1

𝑛"

𝑛#

𝑛$

𝑙!

𝑙"

𝑙#

𝑙$

𝑙%

𝕩!

𝕩"

𝕩#

𝕩$

𝕩%

𝕩&

𝑛!

+1

𝑛"

𝑛#

𝑛$

𝑙!

𝑙"

𝑙#

𝑙$

𝑙%

output

Hummingbird: Status

• Open sourced in May: https://aka.ms/hb-code (See also: Blog Paper Demo)
• Integration with ONNX converters (LightGBM): Blog
• Hummingbird is part of the PyTorch Ecosystem
• Paper will be presented at OSDI 2020

1.7K GitHub
stars

136 GitHub forks >20 external PRs
(~5 regular/repeat contributors,
10 total external contributors),

20 issues filed by
external users

6 user-created
blog posts and
a video tutorial
with >1k views

https://aka.ms/hb-code
https://aka.ms/hb-blog
https://aka.ms/hb-paper
https://aka.ms/hb-demovideo
https://bit.ly/3ivzkU7
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpytorch.org%2Fecosystem%2F&data=02%7C01%7CKarla.Saur%40microsoft.com%7C12502ece7bb04432cbb108d818a4aefc%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637286443150545991&sdata=oZ2SILNAHrK2U6x9q6x5YtMzdxaqXV8yzGNn9vX8eJY%3D&reserved=0

Future work: Integration with other ONNX converters

Operator Group Supported Operators

Linear Classifiers Logistic Regression, Linear SVC, SVC, NuSVC, SGDClassifier, LogisticRegressionCV

Tree Methods DecisionTreeClassifier/Regressor, RandomForestClassifier/Regressor,
(Hist)GradientBoostingClassifier/Regressor, ExtraTreesClassifier/Regressor, XGBClassifier/Regressor,
LGBMClassifier/Regressor/Ranker

Neural Networks MLPClassifier

Others BernouliNB, KMeans

Feature Selectors SelectKBest

Decomposition PCA, TruncatedSVD

Feature Pre-Processing SimpleImputer, Imputer, ColumnTransformer, RobustScaler, MaxAbsScaler, MinMaxScaler, StandardScaler,
Binarizer, KBinsDiscretizer, Normalizer, PolynomialFeatures, OneHotEncoder, LabelEncoder, FeatureHasher

Text Feature Extractor CountVectorizer

Thank you!

hummingbird-dev@microsoft.com

Neta Zmora,

Oct 14, 2020

Q/DQ IS ALL YOU NEED

10 Slides/9 minutes

153

Q/DQ are necessary and sufficient

How do we optimize graphs with Q/DQ?

Where do we insert Q/DQ in our graphs?

AGENDA

154

Q/DQ ARE NECESSARY

For quantizing network input; and dequantizing network output.

For changing precision mid-graph (for example: input to softmax).

155

QAT, PTQ AND FAKE QUANTIZATION

Fake quantization is the prevailing approach used for DNN quantization.

Forward pass: !𝑥 = dequantize(quantize x)

ONNX QuantizeLinear and DequantizeLinear naturally represent fake quantization.

FP32

INT8

Fake
Quant Conv Fake

Quant

Fake
Quant

Weights
FP32

Fake Quantization (QDQ) in training framework

Q Conv Q

QWeights
FP32

Fake Quantization (QDQ) in ONNX

DQ

DQ

DQ

156

Minimize activation bandwidth

Q MatMul Q

QWeights
FP32

Original Graph

DQ

DQ

DQ

Transp
ose

ReLU Max
Pool

Graph after Q/DQ migration

Q MatMul Max
Pool

QWeights
FP32

DQ

Transp
ose

DQ

DQ

Q ReLU

FP32

INT8

*In this presentation we assume per-tensor quantization for activations, and per-channel quantization for weights. This produces the best results and simplifies the math.

157

Commuting with Scale/Shift:

OP -> Q =? Q -> OP

DQ -> OP =? OP -> DQ

Q MatMul Q

QWeights
FP32

Original Graph

DQ

DQ

DQ

Transp
ose

ReLU Max
Pool

Graph after Q/DQ migration

Q MatMul Max
Pool

QWeights
FP32

DQ

Transp
ose

DQ

DQ

Q ReLU

158

Fusion Opportunities

Q1 MatMul Max
Pool

Q2Weights
FP32

DQ1

Transp
ose

DQ3

DQ2

Q3 ReLU

MatMul Fusion Reordering

Q1 DQ1 Max
Pool

Q2Weights
FP32

MatMul

Transp
ose

DQ3DQ2 Q3 ReLU

int32

159

CHANGING Q/DQ OPERATION ORDER

Consider a scalar multiplication:

c = a*b

Suppose fake quantization nodes are attached to the input:

With real quantization we would compute:

Left as an offline exercise for the reader

Which is equivalent to the fake quantized expression:

where

è The only difference between the original graph and the rewritten
graph is the order of operations.

160

Q/DQ PLACEMENT RECOMMENDATIONS

Quantize all inputs of linear operations, by inserting fake quantization (Q/DQ) in front of them.

By default, don’t quantize operator outputs.

Be conservative when adding Q/DQ nodes.

Use per-tensor quantization for activations; and per-channel quantization for weights.

162

Wish we had more
time!

163

ON-BOARDING ONNX MODELS IN ACUMOS
(BY @PHILIPPE LFAI/ONXX SLACK)

Title : Micro-service Generation for ONNX model in Acumos

Abstract : In the same way as models developed in Python, R, C++ and Java, ONNX
models can now take benefits of all the Acumos functionalities and most particularly
they can be dockerised and transformed as a micro-service to ease their deployment.
During this time slot I will explain briefly how we succeeded to do that and what is
the future of our Acumos ONNX onboarding client.

Bio : Philippe Dooze (Orange) joined Orange Labs R&D in 2010, and he mainly works
on projects involved in network QoS based on data and big data analysis. He joined
Acumos LF AI project in 2018 as a Project Team Leader of on-boarding component,
Three month ago, he became Project Team leader of Model Management component
that groups on-boarding, micro service generation and model deployment.

Philippe Dooze
Orange

https://lfaifoundation.slack.com/team/U01C1A5TPPG

164

SIG
Presentations

Architecture &
Infra SIG
Update

ONNX Workshop October 2020

Ashwini Khade, Microsoft

Ke Zhang, Alibaba

4 Slides/9 minutes

Updates and Announcements

• ONNX optimizers moved to separate repo : https://github.com/onnx/optimizer

• CI Updates
• CI improvements for improved reliability
• Moved to AzurePipelines to speed up the runs

• Shape Inference
• Numerous improvements and bug fixes to node level shape inference
• Updates to graph level shape inference (to path IR gap introduced since IR version3)

• ONNX Checker
• Updates to improve model validation coverage
• Limited support for large models

• ONNX Package Updates
• Windows Conda package fixed (was broken since version 1.1)
• Linux Manylinux image updated to 2014

• Version Converters updates

https://github.com/onnx/optimizer

Upcoming Investments

• Reduce ONNX package size

• Remove Optimizes from onnx package

• Infra support for reference implementation (explore plugging reference implementation as
pyOp for onnxruntime)

• Continue investments in shape inference, onnx checker and CIs

• onnx.ai/impact

Get Involved!

• Slack Channel: https://slack.lfai.foundation and join onnx-archinfra

• Meetings and announcements are on slack channel

• Arch Infra SIG meeting will be bimonthly here onwards (announcement on slack channel)

• Submit and review PRs

• Participate in discussions on slack and on github

https://slack.lfai.foundation/

OPERATORS SIG Emad Barsoum (Microsoft)
Michal Karzynski (Intel)

14 Slides/9 minutes

AGENDA

¡ Operators SIG

¡ Add new operator update

¡ Proposal / improvement

¡ Discussion: Version converter

¡ Discussion: PR and Issues

GOAL

Keep Up

Keep up with the
latest progress in AI

Quality

Improve the quality
of ONNX
Operators

Clarity

Reduce ambiguity

Size

Avoid bloating
ONNX spec

PRs and Issues

Keep up with PRs
and operator issues

PARTICIPANTS
¡ Akinlawon Solomon

(Qualcomm)

¡ Darren Crews (Intel)

¡ Dilip Sequeira (NVidia)

¡ Ganesan Ramalingam
(Microsoft)

¡ Itay Hubara (Habana)

¡ Jianhao Zhang (JD)

¡ Ke Zhang (Alibaba)

¡ Leonid Goldgeisser
(Habana)

¡ Milan Oljaca (Qualcomm)

¡ Ofer Rosenberg
(Qualcomm)

¡ Rajeev K Nalawadi (Intel)

¡ Scott Cyphers (Intel)

¡ Shlomo Raikin (Habana)

¡ Simon Long (GraphCore)

¡ Spandan Tiwari (Microsoft)

¡ Wei-Sheng Chin (Microsoft)

¡ Weiming Zhao (Alibaba)

¡ Liqun Fu (Microsoft)

COMMUNICATION

¡ Slack channel: https://slack.lfai.foundation and join onnx-operators

¡ Discussions on GitHub PRs and issues

¡ Meetings announcement are on Slack and Gitter

¡ Docs and meeting notes are in onnx/sigs
https://github.com/onnx/sigs/tree/master/operators

¡ Deprecated: Gitter channel: https://gitter.im/onnx/operators

https://slack.lfai.foundation/
https://github.com/onnx/sigs/tree/master/operators
https://gitter.im/onnx/operators

ADDING NEW OPERATOR ISSUE

¡ Reference implementation in Python isn’t enough.

¡ Runtime and framework writers, start implementing new operators close or after ONNX release.

¡ Any issue cause delay to the release.

¡ Or worse, cause a patch release.

¡ Operator behavior might not match existing framework, especially in corner cases.

ADDING NEW OPERATOR UPDATE

¡ Unit tests need to have the same coverage as the original framework.

¡ Test data need to be generated from the original framework to match behavior.

¡ [Optional] verify the new operator/function in a runtime/framework that support ONNX.

PROPOSAL

¡ Feel free to propose any improvements, such as:

¡ Better testing, validation and coverage of ONNX operators.

¡ Better documentation generation.

¡ More operators.

¡ A lot of existing manual steps need automation.

¡ For any big proposal, you will be invited in the SIG meeting to present it.

GET INVOLVED:
SUBMIT AND REVIEW PRS

PR REVIEW

¡ PRs should be marked with the Operator label

¡ https://github.com/onnx/onnx/pulls?q=is:pr+is:open+label:operator

¡ Ops Contributors Group should review the PRs according to guidelines

¡ Mature PRs can be discussed during bi-weekly sync

¡ Final approval by member of SIG-operators-approvers group

https://github.com/onnx/onnx/pulls?q=is:pr+is:open+label:operator+

GITHUB DISCUSSION ISSUES

¡ Many open discussions marked with Operator label

¡ Ops Contributors Group should be active in discussions and encourage submission of PRs

¡ We should decide which discussions can be closed

¡ Still looking for best way to triage this large number of open issues

https://github.com/onnx/onnx/issues?q=is%3Aissue+is%3Aopen+label%3Aoperator

VERSION CONVERTER

¡ Used to convert from one OPSet to another or vice versa.

¡ Currently, it is outdated.

¡ Should we enforce every operator PR to update the version converter?

TIME MAJOR FLAG FOR RECURRENT

¡ Issue and PR:

¡ https://github.com/onnx/onnx/issues/2159

¡ https://github.com/onnx/onnx/pull/2922

¡ https://github.com/onnx/onnx/pull/2284

¡ Current recurrent operator in ONNX, operate on:

¡ [seq_length, batch_size, input_size]

¡ Most framework support:

¡ [seq_length, batch_size, input_size] and [batch_size, seq_length, input_size]

¡ Some framework hide the batch axis.

https://github.com/onnx/onnx/issues/2159
https://github.com/onnx/onnx/pull/2922
https://github.com/onnx/onnx/pull/2284

THANKS FOR COMING!!!

Operator SIG resources

¡ Slack channel: https://slack.lfai.foundation and join onnx-operators

¡ Documents and artifacts:
https://github.com/onnx/sigs/tree/master/operators

https://slack.lfai.foundation/
https://github.com/onnx/sigs/tree/master/operators

Converters SIG Updates

ONNX Workshop 10/14/2020

Chin Huang, IBM
Guenther Schmuelling, Microsoft

Kevin Chen, Nvidia

11 Slides/9 minutes

Converters SIG Updates

• Converters updates• Frontend converters• Backend converters

• General discussions• What we would like to see…• What we would like to clarify…• Interesting operators

Frontend Converter Updates - keras2onnx

• Opset 12 fully supported in keras2onnx v1.7.0• Support for most huggingface/transformers models• Improved RNN model conversion• Validated successful conversion for 120+ models in github• Bug fixes

185

https://github.com/onnx/keras-onnx/releases/tag/v1.7.0

Frontend Converter Updates - pytorch exporter

186

Frontend Converter Updates - tf2onnx

•Fixes for tf-2.x, tested up to tf-2.3•Support for models > 2GB (--large_model)•Support for quantization aware training (using QDQ)• Improvements to optimizer pass•Constant folding for almost all TF ops•More fusing of nodes, ie. Batchnorm with Conv•Major improvements for conversion speed on large models (3 to 5 times faster)•Bug fixes•Currently supported: tensorflow: up to tf-1.15, tf-2.3 | onnx: opset-7 - opset-12
| python 3.6-3.8

We are now working on improving out of the box conversion rates.
187

Backend Converter Updates – ONNX-TensorRT

TensorRT 7.2.1●Support for parsing models with external data●New API for interfacing with TensorRT’s refit feature ●New tooling (link) ■ONNX-GS - Custom wrapper around the existing ONNX python API
for easier creation and modification of ONNX graphs■Polygraphy - Toolkit that allows running and debugging DL models
between different backends.

Future plans●Continuously improve operator support●Work more closely with front-end converters

https://github.com/NVIDIA/TensorRT/tree/master/tools/

Backend Converter Updates – ONNX-TF

•Tensorflow 2.0 native support, export as saved model, instead of graph
pb•User choice of target device, CPU vs GPU, for optimized graph•Auto and user input for data type cast•Supported Tensorflow versions: 1.15 and 2.3•ONNX opset 12 support•Upcoming•ONNX opset 13 support• Investigation in training and onnx-ml

General discussions

What we would like to see…•Custom ops best practices: 1. convert to backend framework models 2.
execute in backend runtime•Consistency between op schema, doc, and unit tests•Use of checker to ensure model quality and integrity in frontend and
backend•Working standard backend tests•Sequence as an input type•New data type in opset 13: bfloat16•ONNX-ML reference implementation and unit tests at operator/node level,
and more ML models in model zoo•Visualization of subgraphs (loop, if, scan): helpful onnx runtime tool
dump_subgraphs.py,
https://github.com/microsoft/onnxruntime/blob/master/tools/python/dump_subgraphs.py

https://github.com/microsoft/onnxruntime/blob/master/tools/python/dump_subgraphs.py

General discussions

What we would like to clarify…• Inference accuracy could be slightly off between backend frameworks•Optional inputs with default values or blank input names?•Move between attributes and inputs might cause issues for backend
frameworks•Model training use cases specifically for frontend and backend converters,
APIs, models in model zoo

General discussions

Operators we discussed•Resize (variants difficult to understand and execute, if not impossible,
leading to partial support from framework converters)•Loop (and nested loops, might need access to initializers out of loop
scope)•Clip (optional input with blank input name in unit test)•OneHot, NonMaxSuppression (depth input is documented as a scalar,
which could be a scalar or 1-d tensor of size 1 in schema and unit tests)•SplitToSequence (split input could be a scalar or a 1-d tensor)•NegativeLogLikelihoodLoss, SoftmaxCrossEntropyLoss (no direct
mappings in some frameworks)

Thank You and Join our Slack and Meetings
#onnx-converters

https://lists.lfai.foundation/g/onnx-sig-converters/

Wenbing Li, Microsoft
Vinitra Swamy, EPFL
10/14/2020

8 Slides/9 minutes

ONNX
Model Zoo

•Running the ONNX Checker on each new model, working
towards ONNX Runtime testing on model inputs / outputs

Model Zoo CI is active! (onnx#307)

•EfficientNet-Lite 4 (onnx#324)
•YOLO V4 (onnx#322)
•roBERTa (onnx#338)
•T5 (onnx#357)
•SSD MobileNet v1 (onnx#328)
•RetinaNet (onnx#308)
•ShuffleNet (onnx#250)
•Updates to SuperResolution, GoogLeNet, GPT-2,
SqueezeNet, MNIST

New and Updated Models

•Download all models in the zoo with one command
•git lfs pull --include="*" --exclude=""

•All models are stored within the model zoo for long-term
storage

Git LFS Migration complete! (onnx#271)

The ONNX Model Zoo is a collection
of pre-trained, state-of-the-art model

set

https://github.com/onnx/models/pull/307
https://github.com/onnx/models/pull/324
https://github.com/onnx/models/pull/322
https://github.com/onnx/models/pull/338
https://github.com/onnx/models/pull/357
https://github.com/onnx/models/pull/328
https://github.com/onnx/models/pull/308
https://github.com/onnx/models/pull/250
https://github.com/onnx/models/issues/271

More than 50+
models

1
Contributed by 40+
community members

2
10+ categories (like
Image classification,
object detection, LM
etc.)

3
2.7K Stargazers

4

image
classificatio

n

object
detection
and image
segmentati

on

body, face
and gesture

analysis

image
manipulati

on

machine
comprehen

sion

Most popular models: Mobilenet, ResNet, YoloV4, ArcFace

Most popular tutorials: Tensorflow->ONNX, Visualizing an ONNX model,
Pytorch->ONNX, ONNX RT server with SSD

More models for mobile/embedded scenarios

Quantized model

State of art models

ONNX opset upgrading

Vinitra Swamy has recently left Microsoft to begin her PhD in Switzerland (at EPFL). She is
stepping down as SIG lead but will still be an active member in the model zoo efforts.

Wenbing Li is a core contributor to the ONNX converter efforts and is taking over leadership
of the Model Zoo + Tutorials SIG.

Files needed for PR
ONNX Model File
Test input data
Inference example/ tutorial if
applicable
ReadME.md

Model verification
onnx.checker
Inference checker by the test data

§ Join us!

§ Slack Channel: https://slack.lfai.foundation and join onnx-modelzoo

§ Monthly meetup

§ Info page: https://github.com/onnx/sigs/tree/master/models-tutorials

https://slack.lfai.foundation/
https://github.com/onnx/sigs/tree/master/models-tutorials

