
Converters SIG Updates

Workshop 04/09/2020
Chin Huang, IBM

Guenther Schmuelling, Microsoft

Converters SIG Updates

• Quick polls… support for onnx-ml and onnx training
• Frontend converters
• Backend converters
• Training user experience discussions
• ONNX-MLIR

Frontend Converter Updates (since Nov)

Pytorch-ONNX exporter
● ONNX Compliance

● Opset 11 fully supported in Pytorch 1.4.0；Opset 12 in progress
● Operators improvement

● More than 20+ new operators have been enabled
● Several existing operators export has been updated

● New features
● Large model export supported in pytorch-onnx exporter

■ HuggingFace GPT-2 Large with 72 layers beyond the 2GB limit exported successfully
● ONNX checker Integration in pytorch-onnx exporter for high-quality model export
● Boolean tensor indexing supported in pytorch-onnx exporter

● More out-of-box model conversion with Pytorch 1.4
● Hugging Face BERT/GPT2 models
● TorchVision models (Opset 11, with fixed input size)

■ Such as FasterRCNN, MaskRCNN, and KeypointRCNN

https://github.com/pytorch/pytorch/releases

Frontend Converter Updates (since Nov)
Keras-ONNX converter

● Opset 11 fully supported in Keras2onnx V1.6.0; Opset 12 in progress
● Support tf.keras in tensorflow 2.0/2.1 with subclassing mode

● Tensorflow 2.2 supported in master branch
● Bidirectional RNN model fully supported
● More out-of-box model conversion

● tf.keras.applications models; huggingface/transformers.

Sklearn-ONNX converter
● Opset 11 fully supported in skl2onx V1.6.0; Opset 12 in progress
● Supported new models in Scikit-learn 0.22.1

● StackingRegressor/Classifier, KNNImputer, CategoricalNB, KNeighborsTransformer,
HistGradientBoostingRegressor/Classifier, NeighborhoodComponentsAnalysis

● New features added
● Boolean input type, decision_function and custom parsers supported in skl2onnx

ONNXConverter-Common
● More graph optimizations added in Graph Optimizer

● MaskRCNN converted from Keras : Observed 50% nodes reduction and up to 7.9x perf
speedup with graph optimization

https://github.com/onnx/keras-onnx/releases/tag/v1.6.0
https://github.com/huggingface/transformers
https://github.com/onnx/sklearn-onnx/releases/tag/1.6.0

Frontend Converter Updates (since Nov)
Tensorflow-ONNX converter

released version tf2onnx-1.5.6
● supports opset 7-11, tensorflow 1.5-1.14

master
● opset 7-11
● tensorflow 1.11-1.15, tensorflow 2.1-2.2

experimental tensorflow 2 support
● basic models should work
● still some issues with lstm
● uses tensorflow V2 control flow

Backend Converter Updates

• ONNX-TF
• Tensorflow 2.0 new APIs, tf.function, and persist as SavedModel
• Opset 11 support almost complete
• Dynamic/Unknown input shapes

○ ONNX supports it but no standard backend test to verify it
○ ONNX-TF implemented some dynamic shape input test
https://github.com/onnx/onnxtensorflow/blob/master/test/backend/test_dynamic_shape.py

• General
● ONNX-ML

○ Operators support level (poll)
○ Standard ONNX-ML test cases

● Training
○ Training support plans (poll)
○ Training user experience in converters

https://github.com/onnx/onnxtensorflow/blob/master/test/backend/test_dynamic_shape.py

Training User Experience in Converters

Use case #1: The onnx model contains inference only graph and the backend
converters/runtimes will generate and run training graph
Expected behaviors:
• Backend (framework converter or runtime) executes training with user inputs or defaults for

hyperparameters, loss functions, and optimizers
• No changes to the frontend converters to support this use case
• Runtime persists a ONNX trainable model after n iterations. The next training iteration and inference

could be executed in either a runtime or a framework, see use case #2.
• Converter converts to and persists a framework specific trainable model after n iterations. The next

training iteration and inference are executed in a framework.

Framework
inference model

Existing ONNX
inference model

for mnist

Framework training
model

Train in framework

ONNX training model

Backend Converters
Frontend Converters Framework inference

model

Train in runtime

ONNX inference
model

Training User Experience in Converters

Framework training
model

Sample ONNX
trainable model

for mnist

Framework training
model

Train in framework

ONNX training model

Backend Converters
Frontend Converters Framework inference

model

Train in runtime

ONNX inference
model

Use case #2: The onnx model contains inference and training information
Expected behaviors:
• Frontend converter generates the training info as described in spec, such as hyperparameters, training

initialization, algorithm, gradients, loss functions, optimizers
• Backend (framework converter or runtime) executes training as described in the model/training info
• Runtime persists an ONNX trainable model after n iterations. The next training iteration and inference

could be executed in either a runtime or a framework.
• Converter converts to and persists a framework specific trainable model after n iterations. The next

training iteration and inference are executed in a framework.

Training User Experience in Converters

Training support in Converters
• Currently converters are in various phases of readiness, from no plans, early investigation, to

simple prototype

Questions:
• What are the practical (customer) models and scenarios that illustrate training starts from one

framework and ends in another (possibly transfer learning)?
• Should a backend framework converter also generate and save an ONNX trainable model in

addition to the framework format?
• Any ONNX training APIs, similar to ‘prepare’ for inference, for converters to test and verify

training capability?

Implementing ONNX using
MLIR

Gheorghe-Teodor (Doru) Bercea
Tong Chen

Alexandre Eichenberger
Tian Jin

Kevin O’Brien

Structure of ONNX-MLIR

▪ Generate automatically a TableGen description from the Operators.md ONNX specification (gen_doc.py)
▪ Manually define variants of existing ONNX operations when desired (ex. Conv with no bias: MaxPoolSingleOut).
▪ Process TableGen files to produce C++ code
▪ Implement shape inference rules according to ONNX specification and apply them (Example 1).
▪ Apply rewrite rules to source containing shape-inferred ONNX Dialect operations.
▪ Lower ONNX Dialect operations to KRNL and Standard Dialects.

ONNX
Specification

ONNX MLIR
Dialect

Auto-generated

Variants of
ONNX Ops

Rewrite rules
(canonicalize)

gen_doc.py

Inference
rules

MLIR Definitions of
ONNX objects

C++

Shape
inference

pass

MLIR ONNX Dialect
Rewrites

Lowering
Pass

ONNX-MLIR

canonicalization

M
LI
R

M
LI
R

TableGen

KRNL + MLIR
Standard
Dialects

LLVM
Dialect

LLVM
IR

Convolution in ONNX dialect

ONNX
Model

%2 = "onnx.Conv"(%arg0, %arg1) {
auto_pad = "SAME_UPPER",
dilations = [1, 1],
group = 1 : i64,
kernel_shape = [5, 5],
strides = [1, 1]

} : (tensor<1x1x28x28xf32>, tensor<8x1x5x5xf32>) ->
tensor<1x8x28x28xf32>

onnx-mlir --EmitONNXIR mnist.onnx

Defining the ONNX Dialect in TableGen
▪ Read the ONNX specification and automatically translate specs into an MLIR TableGen file (gen_doc.py).
▪ TableGen format is later transformed by MLIR TableGen into:

builders for creating the objects representing the ONNX operation
getter and setter methods for arguments and attributes (ex. A(), B(), …),
verification methods
inference method declarations
canonicalization methods declarations

def ONNXAddOp:ONNX_Op<"Add",
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
let hasCanonicalizer = 1;
let summary = "ONNX Add operation";
let description = [{
"Performs element-wise binary addition. …"
}];
let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$A,

AnyTypeOf<[AnyMemRef, AnyTensor]>:$B);
let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$C);

}

%0 = "onnx.Gemm"(%a0, %a1, %a2) {
alpha = 1.000000e+00 : f32,
beta = 1.000000e+00 : f32,
transA = 0 : i64,
transB = 0 : i64 } : (tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>) ->

tensor<10x10xf32>

Declaring transformations for ONNX Dialect in TableGen
%0 = "onnx.MatMul"(%a0, %a1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<10x10xf32>
%1 = "onnx.Add"(%0, %a2) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<10x10xf32>

M
LIR Pat<(ONNXAddOp (ONNXMatMulOp:$res $m1, $m2), $m3),

(ONNXGemmOp $m1, $m2, $m3, (GemmAlpha), (GemmBeta), (GemmTransA), (GemmTransB))>

Where we are with development.
▪ Full support for representation of ONNX operations within MLIR framework.
▪ Growing number of operations can be lowered from ONNX -> MLIR Dialects -> LLVM.
▪ Support lowering of MNIST from ONNX Dialect to LLVM.

In Progress:
▪ Laying down some infrastructure that will allow the user to control compiling and running models in

general not just MNIST.
▪ More operation lowering support.
▪ Explore optimal ways to encode ONNX model metadata -

• Opset version, initializers, big constants.
▪ Support operation versioning -

• ONNX-MLIR can potentially help with converter efforts too.
▪ More tests!

Thank You!
and

Join our SIG Meetings
https://lists.lfai.foundation/g/onnx-sig-operators/

https://lists.lfai.foundation/g/onnx-sig-operators/

