Converters SIG Updates

Workshop 04/09/2020
Chin Huang, IBM
Guenther Schmuelling, Microsoft
Convertisers SIG Updates

- Quick polls… support for onnx-ml and onnx training
- Frontend converters
- Backend converters
- Training user experience discussions
- ONNX-MLIR
Frontend Converter Updates (since Nov)

Pytorch-ONNX exporter

- **ONNX Compliance**
 - Opset 11 fully supported in **Pytorch 1.4.0**; Opset 12 in progress
- **Operators improvement**
 - More than 20+ new operators have been enabled
 - Several existing operators export has been updated
- **New features**
 - Large model export supported in pytorch-onnx exporter
 - HuggingFace GPT-2 Large with 72 layers beyond the 2GB limit exported successfully
 - ONNX checker Integration in pytorch-onnx exporter for high-quality model export
 - Boolean tensor indexing supported in pytorch-onnx exporter
- **More out-of-box model conversion** with Pytorch 1.4
 - Hugging Face BERT/GPT2 models
 - TorchVision models (Opset 11, with fixed input size)
 - Such as FasterRCNN, MaskRCNN, and KeypointRCNN
Frontend Converter Updates (since Nov)

Keras-ONNX converter
- Opset 11 fully supported in [Keras2onnx V1.6.0](https://github.com/fuzimitor/Keras2onnx); Opset 12 in progress
- Support tf.keras in tensorflow 2.0/2.1 with subclassing mode
 - Tensorflow 2.2 supported in master branch
- Bidirectional RNN model fully supported
- More out-of-box model conversion
 - tf.keras.applications models; [huggingface/transformers](https://huggingface.co/)

Sklearn-ONNX converter
- Opset 11 fully supported in [skl2onnx V1.6.0](https://github.com/scikit-onnx/skl2onnx); Opset 12 in progress
- Supported new models in Scikit-learn 0.22.1
 - StackingRegressor/Classifier, KNNImputer, CategoricalNB, KNeighborsTransformer, HistGradientBoostingRegressor/Classifier, NeighborhoodComponentsAnalysis
- New features added
 - Boolean input type, decision_function and custom parsers supported in skl2onnx

ONNXConverter-Common
- More graph optimizations added in Graph Optimizer
 - MaskRCNN converted from Keras: Observed 50% nodes reduction and up to 7.9x perf speedup with graph optimization
Frontend Converter Updates (since Nov)

Tensorflow-ONNX converter

released version tf2onnx-1.5.6
- supports opset 7-11, tensorflow 1.5-1.14

master
- opset 7-11
- tensorflow 1.11-1.15, tensorflow 2.1-2.2

experimental tensorflow 2 support
- basic models should work
- still some issues with lstm
- uses tensorflow V2 control flow
Backend Converter Updates

- **ONNX-TF**
 - Tensorflow 2.0 new APIs, tf.function, and persist as SavedModel
 - Opset 11 support almost complete
 - Dynamic/Unknown input shapes
 - ONNX supports it but no standard backend test to verify it
 - ONNX-TF implemented some dynamic shape input test

- **General**
 - ONNX-ML
 - Operators support level (poll)
 - Standard ONNX-ML test cases
 - Training
 - Training support plans (poll)
 - Training user experience in converters
Training User Experience in Converters

Use case #1: The onnx model contains inference only graph and the backend converters/runtimes will generate and run training graph

Expected behaviors:
• Backend (framework converter or runtime) executes training with user inputs or defaults for hyperparameters, loss functions, and optimizers
• No changes to the frontend converters to support this use case
• Runtime persists a ONNX trainable model after n iterations. The next training iteration and inference could be executed in either a runtime or a framework, see use case #2.
• Converter converts to and persists a framework specific trainable model after n iterations. The next training iteration and inference are executed in a framework.
Use case #2: The onnx model contains inference and training information

Expected behaviors:

- **Frontend converter** generates the training info as described in spec, such as hyperparameters, training initialization, algorithm, gradients, loss functions, optimizers.

- **Backend (framework converter or runtime)** executes training as described in the model/training info.

- **Runtime** persists an ONNX trainable model after n iterations. The next training iteration and inference could be executed in either a runtime or a framework.

- **Converter** converts to and persists a framework specific trainable model after n iterations. The next training iteration and inference are executed in a framework.
Training User Experience in Converters

Training support in Converters
• Currently converters are in various phases of readiness, from no plans, early investigation, to simple prototype

Questions:
• What are the practical (customer) models and scenarios that illustrate training starts from one framework and ends in another (possibly transfer learning)?
• Should a backend framework converter also generate and save an ONNX trainable model in addition to the framework format?
• Any ONNX training APIs, similar to ‘prepare’ for inference, for converters to test and verify training capability?
Implementing ONNX using MLIR

Gheorghe-Teodor (Doru) Bercea
Tong Chen
Alexandre Eichenberger
Tian Jin
Kevin O’Brien
- Generate automatically a TableGen description from the Operators.md ONNX specification (gen_doc.py).
- Manually define variants of existing ONNX operations when desired (ex. Conv with no bias: MaxPoolSingleOut).
- Process TableGen files to produce C++ code.
- Implement shape inference rules according to ONNX specification and apply them (Example 1).
- Apply rewrite rules to source containing shape-inferred ONNX Dialect operations.
- Lower ONNX Dialect operations to KRNL and Standard Dialects.
Convolution in ONNX dialect

%2 = "onnx.Conv"(%arg0, %arg1) {
 auto_pad = "SAME_UPPER",
 dilations = [1, 1],
 group = 1 : i64,
 kernel_shape = [5, 5],
 strides = [1, 1]
} : (tensor<1x1x28x28xf32>, tensor<8x1x5x5xf32>) ->
tensor<1x8x28x28xf32>
Defining the ONNX Dialect in TableGen

- Read the ONNX specification and automatically translate specs into an MLIR TableGen file (gen_doc.py).
- TableGen format is later transformed by MLIR TableGen into:
 - builders for creating the objects representing the ONNX operation
 - getter and setter methods for arguments and attributes (ex. \texttt{A()}, \texttt{B()}, ...),
 - verification methods
 - inference method declarations
 - canonicalization methods declarations

```python
    let hasCanonicalizer = 1;
    let summary = "ONNX Add operation";
    let description = [{
        "Performs element-wise binary addition. ..."
    }];
    let arguments = (ins AnyTypeOf<[AnyMemRef, AnyTensor]>:$A,
                    AnyTypeOf<[AnyMemRef, AnyTensor]>:$B);
    let results = (outs AnyTypeOf<[AnyMemRef, AnyTensor]>:$C);
}```
Declaring transformations for ONNX Dialect in TableGen

%0 = "onnx.MatMul"(%a0, %a1) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<10x10xf32>
%1 = "onnx.Add"(%0, %a2) : (tensor<10x10xf32>, tensor<10x10xf32>) -> tensor<10x10xf32>

MLIR

\[
\text{Pat<}(\text{ONNXAddOp (ONNXMatMulOp:}$res$ $m1$, $m2$), $m3$),
(ONNXGemmOp $m1$, $m2$, $m3$, (GemmAlpha), (GemmBeta), (GemmTransA), (GemmTransB))>}
\]

%0 = "onnx.Gemm"(%a0, %a1, %a2) {
    alpha = 1.000000e+00 : f32,
    beta = 1.000000e+00 : f32,
    transA = 0 : i64,
    transB = 0 : i64} : (tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>) ->
tensor<10x10xf32>
Where we are with development.

- Full support for representation of ONNX operations within MLIR framework.
- Growing number of operations can be lowered from ONNX -> MLIR Dialects -> LLVM.
- Support lowering of MNIST from ONNX Dialect to LLVM.

In Progress:

- Laying down some infrastructure that will allow the user to control compiling and running models in general not just MNIST.
- More operation lowering support.
- Explore optimal ways to encode ONNX model metadata -
  - Opset version, initializers, big constants.
- Support operation versioning -
  - ONNX-MLIR can potentially help with converter efforts too.
- More tests!
Thank You!
and
Join our SIG Meetings
https://lists.lfai.foundation/g/onnx-sig-operators/