Infra SIG Update:
What 1s new?

* Training support (Preview)
* TraininginfoProto (state-variables, initialization-step, training-step)

* Function update
* Functions with context-dependent function-body
* Functions dependent on specific operator sets

* ONNX-MLIR (in progress)
* ONNX dialect in MLIR



Training support

* https://github.com/onnx/onnx/blob/master/docs/IR.md#training -
related-information

* Welights to be trained (a subset of initializers)

* Initialization (of weights) described using:
* a Graph
* a binding (map from weights to outputs of graph)
* Training step (updates of weights) described using:
* a Graph
* a binding (map from weights to outputs of graph)

* Gradient operator
* GraphCall operator



https://github.com/onnx/onnx/blob/master/docs/IR.md

Infra SIG Update:
What next?

* Recurring Tradeoft:
* Expressiveness (new ops for new models) vs.
* Efficiency (e.g., exploit hardware features) vs.
* Development Cost

* Better use of the function mechanism that i1s intended to target
this tradeoff

* |dentify a better core set of primitive ops (leverage learning from multiple
Implementation frameworks, including MLIR)

* Reflect the design in dialect design in ONNX-MLIR
* Do we need more than 2 levels in ONNX?



Function Extension: Detaills

* Operator registration APIs extended to allow:

* Function body that depends on statically available context (attribute
values, etc.)

* OpSchema& SetContextDependentFunctionBodyBuilder _
(ContextDependentFunctionBodyBuilder);

* Examples: SoftmaxCrossEntropyLoss, NegativeLogLikelihoodLoss

* Functions that rely on multiple external operator sets.

* OpSchema& FunctionBod\P/(const std::vector<NodeProto>& func_nodes, const
std::vector<OperatorSetldProto>& opsets);


https://github.com/onnx/onnx/blob/6bdac246617682f9696f0dac40362ef4f4de2cde/onnx/defs/math/defs.cc
https://github.com/onnx/onnx/blob/6bdac246617682f9696f0dac40362ef4f4de2cde/onnx/defs/math/defs.cc

Infra SIG Update:
Call for actions/contributions

* Backend scoreboard: please register your backends here:
* https://github.com/onnx/backend-scoreboard

* Tools for checking compliance (IR and opsets)
* Stricter onnx checker
* Better test coverage with node/model level test cases.
* Better testing for functions

* Improve Build/Setup — first user experience improvement
* Improve release process
* Improve Cl

* IR levels design and implementation and ONNX-MLIR

. gm\ltgg core ops and op-categories that help simplify a backend implementing



https://github.com/onnx/backend-scoreboard

