
1© 2020 The MathWorks, Inc.

ONNX with MATLAB

Shounak Mitra
Product Manager

Deep Learning 

Ting Su
Development Manager

Deep Learning



2

Agenda

MathWorks’ Investments in ONNX

How MATLAB users use ONNX

Current Goals



3

Agenda

MathWorks’ Investments in ONNX

How MATLAB users use ONNX

Current Goals



4

Model exchange with MATLAB

PyTorch

Caffe2

MXNet

Core ML
TensorFlow

MATLABONNX

Open Neural Network Exchange

(…)

Deep Learning Toolbox



5

MATLAB’s support for ONNX

Support for Models from ONNX Model Zoo

Increasing number of support for ONNX layers

MATLABONNX

importONNXNetwork

importONNXLayers

exportONNXNetwork



6

ONNX Model Import Workflow in MATLAB

Import

Model Imported with Placeholder Layers

Retrain/ Optimize/ Run 
Inference

Generate Code

Visualize

Future Release

All Layers and operators supported

ONNX Model

MATLAB Neural Network Model

Not all layers and operators supported

System Integration

• Author Custom Layer
• Replace Placeholder with Custom Layer 

& Assemble Network

importONNXNetwork

importONNXLayers



7

Agenda

MathWorks’ Investments in ONNX

How MATLAB users use ONNX

Current Goals



8

Export to ONNX Workflow: Users use MATLAB for Labeling, 
Preprocessing, Training

(Automatic) Labeling
Training and 
Experiment 

Management

ONNX 
Model 
Format

exportONNXNetwork

Preprocessing

Image Labeler App: Automate Image Labeling

Signal Labeler LiDar Point Cloud Labeling

Video Labeling

Deep Network Designer App: Point and Click 
tool to design and train networks

Experiment Manager App



9

Import from ONNX Workflow: Users use MATLAB for Code Generation, 
Visualization, Re-Training, and Simulink for System Integration

MATLAB Neural Network Model

Code Generation and 
Deployment

Visualization/ 
Debugging

Analyze Network/ 
Retrain

System Integration 
(with Simulink)

importONNXNetwork

ONNX Model

Custom Training Loop

Automatic Differentiation

Weight Sharing

Reinforcement Learning

Automated Driving

Control Systems



11

Explore MATLAB for deep learning

Denso Ten Develops Model-Based Workflow 
Process for AI Control System Development
Natsuki Yokoyama, Denso Ten
Complex vehicle control issues can be difficult to formulate and require the experience 
of experts to resolve. Deep learning is often used to overcome this challenge. Denso 
Ten initially used Python for their AI work, but they had no way to convert it to C code for 
ECU implementation and couldn’t apply it to simulation for model-based development. 
Instead, they developed a model-based workflow using MATLAB® and Simulink®.
They begin by importing the AI model created in MATLAB® into the existing Simulink®

control system model. Using the Simulink API, they can automatically create Simulink 
blocks, connect wires, and copy weight values from AI models. Denso Ten also 
developed an AI library and can now simulate the entire model. They then convert the 
Simulink model back to a MATLAB based AI model. 
Denso Ten has completed the model-based development workflow from design to 
implementation; they are now proceeding with development for production.

A model-based development workflow is 
essential in order to use AI for control 
ECUs. Combining the existing control 
model and the AI model enables us to 
establish a simulation environment and 
accelerate product development.

“

“
Advantages of using MATLAB and Simulink:
• Apply model-based development to integrate AI model into existing control model
• Use Deep Network Designer for network construction through mouse operations
• Use API for bidirectional conversion of deep learning model between MATLAB and Simulink
• Access original AI library using S-functions

https://www.mathworks.com/solutions/deep-learning.html%3Fs_tid=hp_brand_deeplearning


12

Presented at MATLAB Expo 2019 France
Learn about deep learning modelling

Artificial Intelligence & Deep Learning for 
Automatic Defect Detection
Nicolas Castet, Airbus
How do you build a robust end-to-end AI model to automatically detect the multiple 
defects of the pipes? That was the big challenge for Nicolas and Airbus, who used 
MATLAB and its solutions to quickly prototype and develop deep learning models 
to meet their needs.

Working with the MathWorks Consulting team, they adopted MATLAB to address 
the three main steps in the process. The first step was to have an integrated tool to 
build and train deep learning models from scratch, for approaches such as 
semantic segmentation, as well as an easy and interactive environment for labeling 
videos. With MATLAB, from position of holes on pipe, they measured distance and 
angle required by standard. Next, they needed to be able to display in real-time 
the analysis of the defects. The final step was to translate the MATLAB code to 
CUDA code automatically, without requiring any coding skills, to deploy it directly 
on the embedded system. 

Having the possibility to 
test, modify, train and 
test again the code in a 
short timeframe was key 
to success.

“

“
Image related to 

the story . Reuse an image 
from the speaker's 

presentation.Advantages of using MATLAB:
• An integrated tool to design, train and deploy deep learning models
• Interactive prototyping and testing in a very short amount of time
• Direct translation from MATLAB language to CUDA code



13

Airbus used MATLAB toolchain for Automatic Defect Detection of location of 
structural elements to calculate acceptable flex of wing of A380

Problem Statement: Calculating acceptable flex of wing of A380.

GPU DeploymentVideo LabelingData Visualization

How it worked

Model Development

MATLAB 2019 expo talk

https://fr.mathworks.com/videos/artificial-intelligence-to-facilitate-inspection-1564500811305.html


14

Agenda

MathWorks’ Investments in ONNX

How MATLAB users use ONNX

Current Goals



15

Goals - MATLAB’s Support for ONNX 

§ Import 90% of the models released on ONNX model zoo

§ Support quantization and multi-platform code generation for imported 
ONNX models

§ Export 90% of deep learning models trained in MATLAB to ONNX


