XILINX

PyTorch-to-FPGA for QNNs with

@ ONNX Community Virtual Meetup, 2020-04-09

Yaman Umuroglu
Xilinx Research Labs

Xilinx
Research,
Dublin

Established over 14 years ago

Slowly expanding and increasingly leveraging
external funding (IDA, H2020)

6 full-time researchers + interns

Applications & Architectures
Quantifying the value proposition of Xilinx
devices in machine learning

In collaboration with Partners, Customers
and Universities

Lucian Petrica, Giulio Gambardella, Alessandro Pappalardo,
Ken O’Brien, Michaela Blott (leader), Nick Fraser, me (from left to right)

Exploring Custom Hardware + Algorithms for DNNs

k-bit weights and
activations, k <=4

keep all on-chip!

allocated resource ~
compute requirement
per layer

& XILINX

©C

Few-bit QNNs + FPGA Dataflow: Showcases

High Throughput Low-Power, Real-Time Complex
& Low Latency Object Detection Topologies

MNIST MLP on ZC706 Tincy-YOLO on Ultra96 ResNet-50 on Alveo U250
12.3 M FPS 55FPS@ 10 W 2 ms latency
310 ns latency 2000 FPS

4 © Copyright 2020 Xilinx iA X"—I NX

The FINN Project: Mission

Support customizing
the algorithms with
precision, layer types,
topologies

Support hardware

architecture exploration
around dataflow execution

Flexibility
on
Algorithms

Flexibility
on
Architectures

Codesign

Transparency and
flexibility through open
source (if not supported,
add your own!)

AN

End-to-end flow to lower

Open source from the
ground-up to
encourage community

contributions

adoption barrier

© Copyright 2020 Xilinx

& XILINX

The FINN Project: Components of the Stack

From PyTorch to FPGA

Customization
of Algorithm

Customization
of Hardware
Architecture

QNN training in PyTorch

Brevitas

Frontends, Transformation,
Dataflow Backend

FINN Compiler

Deployment with -~ | O

© Copyright 2020 Xilinx

& XILINX

An Overview of the FINN Compiler

» Python library of graph transformations
» Each consumes and produces an ONNX graph

ONNX

Import

Streamlining

» User calls sequence of transformations to [Hardware Cost Model }

create their own flow
» Example end-to-end flows to get started

Hardware Mapping

Resource Allocation

Code Generator

_ _ _ [FINN HLS Library]—>
» Primary backend target is our own Vivado
HLS library

» Templated datatypes, configurable parallelism

Software Library

Synthesizable
description

4)

Vivado
Synthesis, PAR

- /

i |

Host Run-time

FPGA Platform]

7 © Copyright 2020 Xilinx

& XILINX

How We Use ONNX in the FINN Compiler

lass DataType(Enum):
FLOAT32
BINARY
BIPOLAR

UINT2

Custom quantization annotations
for few-bit types

Use quantization annotation

ONNX float32 tensor as container,
values restricted to few-bit types
indicated by type name (string)

B fpgadataflow

=) _init__.py

=] im2col.py

=] maxpoolnhwc.py

=] multithreshold.py

=) registry.py

Custom op_types
at different abstraction levels

Identified by op type and domain

Python wrappers to provide
implementations for exec, codegen..

© Copyright 2020 Xilinx

ONNX
RUNTIME

Vivado™ HLS V
[_]' , VERILATOR

Hybrid runtime to
verify model correctness

Mix onnxruntime, Vivado HLS
C++ and RTL (PyVerilator)

Not performance-oriented

& XILINX

How We Use ONNX in the FINN Compiler

nnnnnnnnnnnnnn

model = ModelWrapper("fpgadhep-bw%d.onnx" % bw)

model = model.transform(Infershapes())

model = model.transform(FoldConstants()) # :)atETy:'_:E’IP—“«PY, carried as float32
model = model.transform(GiveUniqueNodeNames()) ig,}‘.;lpg_r_[:rmal = (l) 78-;'.)

model = model.transform(GiveReadableTensorNames()) # DataType. EII»:‘\PY, carried as float3?
model = model.transform(InferDataTypes()) - :
model = model.transform(Streamline()) # with stream time IT"LJlti_Dl%E‘)'(ing
model = model.transform(ConvertBipolarMatMulToXnorPopcount()) iE-}“ExpE_f:C?l'jEd - (.l.) 49, 16)
AddIntoMultiThreshold())

model = model.transform(absorb.AbsorbMulIntoMultiThreshold())

model = model.transform(absorb.Ab

DataType.BINARY, packed as uint3
model = model.transform(RoundAndClipThresholds()) # with stream time I"'Jlti;]l%)iil?g

ishape packed = (1, 49, 2)

model = model.transform(to_hls.InferBinaryStreamingFCLayer())

model = model.transform(to_hls.InferQuantizedStreamingFCLayer())

Library of Python Tensors with custom Use Netron for debugging
graph transformations data layout and packing

Operating directly on ONNX e.g. pack 8x1-bit as 1x8-bit Visually inspect transformed graphs
representation
Utility functions to convert back Check node attributes, initializers
Including constant folding, shape and forth
inference, convolution lowering ++

9 © Copyright 2020 Xilinx (A XI LI NX

Join our Growing Open-Source Community!

4 #? N

GitHub
https://xilinx.github.io/finn

N

% Stanford

University

N/

UNC CHARLOTTE

b A b AN A
gl e 1 /49-0°p | Xal5-T
A A

T WPYEIEY
-=';=‘ Fasmsr:)sm - e

A N
OB
=
s H
(O3
+~ M T
n B -\ I DETERMINATION USING" =+ 7"
i & -
4 5 =i B ;
<
OF 552 “awoew et
(1] L s
o
N - e o] -
:Jl“""“".’i‘"’: . B Pkl | gH
1o £, T p L

e Knowledge for a better world

University courses, student/hobbyist projects

e

EFI (LFC,CNV) #
load_parameters().
inference FORE

BNN-PYNQ®Y 7 b7 = 7 241K

<Y 7 b = 7 (Python)>

</ TR 7(C/CH+)>

SWEIL R HWEIL K

L I 251l

o _

2 e e
. ErEReEES—
M EEREsascma
s HEEREEEEE=

s AlEEESEESE

N T T T LT
v IS

s AN EEEESEEER

c IESFEERSENG

Japanese documentation effort + «cucumber sorting»

Sketch Recognition (Xilinx Edinburgh)

© Copyright 2020 Xilinx

& XILINX

XILINX

Thank You

