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Breakthrough optimizations
for transformer inference on GPU and CPU
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Using cuttingedge NLP techniques like transformers

Bing Search Engin

to better understand user queries, webpages, and other documents




Transformer for natural language processing

ATransformers breakthrough in natural language understanding

ABERT Bidirectional Encoder Representations from Transformers
AArchitecture (L: layers (transformer block), H:hidden size, Aastelition head)
ABERT base: L=12, H=768, A=12, Parameters=110M
ABERT large: L=24, H=1024, A=16, Parameters=340M

ARunning a 12or 24layer BERT for every query réiahe is prohibitively

expensive



BERT optimizations in Bing

Leveraged knowledge
distillation to create a

Reimplemented the
model usinglensorRT
C++ APIs

Finetuned BERBase,
a 12layermodel

3-layeredBERT

wNo any significant loss in

accuracy wTake full advantage of
wSignificantly improves wReduced inference cost NVIDIA GPU architecture
Precision and Coverage significantly w300x throughput
wStill benchmarked at 77ms improvement on GPU

serving latency on CPU

- ) - / - )

Problem- Reimplement the model was timsnsuming



Transformer inference acceleration
with ONNX Runtime



BERT Optimization Opportunit

AModel

A Too many elementary operators

A Multi transformer cells

AKernels in ONNX Runtime

A Not fully utilize hardware characteristic
A CPU cores

A TensorCore

 S——

i
i )
Add & Norm

Feed
Forward

Nx | —(7Add & Norm )

.

| S—

Multi-Head
Attention

T

J

Positional
Encoding

O

input
Embedding

T

Inputs



BERT optimization in ONNX Runtime

ONNX Model
ONNX RUNTIME ‘
Intermediate Representation (IR)
Graph Optimization (in general)
T Graph optimization
Graph Partitioning
User Graph Optimization (per Execution Provider) Inference

Inputs Results Y Hardwarebased kernel optimization

# Executor SequentialExecutdParallelExecutdr ‘

Execution Providers

CpuEP|| CudaEP || TensorRTEPR | nGraphER D




ONNX Runtime Graph Optimization

' -GraphTransfurmer A ' -GraphTransfurmerManager A G ra‘p hTra‘nSformer
Clazs Class
7 r A An interface created for finding patterns (with specific
b Fields 4 Fields . et -
e e p— nodes) and applying rewriting rules against a-gudph.
za depbimel ‘g‘ﬂ:“iq_ . A An interface created for applying graph transformation
o Nome *  Regoer with full graph editing capability.
Fi b Mested Types
public
' E{J_If:ﬂasedﬁraphTransfurmer A | ' g?fwiteﬂule A | Graph Optlmlzatlon Level
=+ GraphTransformer r . . .
_p r  Fields Basic:General transformers not specific to any specific
e 4 Methods execution provider (e.g. drop out elimination)
r— @, Apply . : -
¢ Methods ® Name Extended:Execution provider specific transformers
@, Applylmpl
a APPYImp @, SatisfyCondition o _
2* ppebRulesOnticde b Nested Types Layout Optimizationschange the data layout for
egister

applicable nodes (NCHW layout MHWCIayout)



BERT Encoder Block

APositional embeddings
AMulti-headed seHattention
AFeedforward layers

ALayer norm and residuals
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Embedding and Positional Encoding fusion
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Multi-headed selfattention Fusion
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GeluFusion

GELU(z) := 2P(X < z) = 2®(z) = 0.5z (1 +erf (%))
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Skip Layer Normalization Fusion
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BERT Graph
Optimizations

= BasiclLevel

wConstant Folding
wReshape Fusion

o CxtendedLevel

wGELU Fusion

wLayer Normalization Fusion
wBERT Embedding Layer Fusion
wAttention Fusion

wSKkip Layer Normalization Fusion
wBias GELU Fusion

wFast GELU Fusion
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BERT optimization in ONNX Runtime

ONNX Model
ONNX RUNTIME ‘
Intermediate Representation (IR) - . .
| eotwewwe 1 Hardwarebased kernel optimization

Inputs Results - Take full advantage of the GPU architecture

# Executor SequentialExecutdParallelExecutdr ‘

Execution Providers

- Increase the parallelization and fully leverage available
CpuEP|| CudaEP || TensorRTEPR | nGraphER D
CPU cores

Leverage GEMM to further reduce the computation cost

Optimized CPU and CUDA kernels in ONNX

Runtime
Inference

In self-attention layer CPU implementation




BERWIith ONNX
Runtime

BERISQUAD with 128
sequence length and batch size
1 on Azure Standard NC6S_v3
(GPU V100)

A'in 1.7msfor 12-layer fp16
BERISQUAD.

A in 4.0msfor 24-layer fp16
BERISQUAD.

CPU

GPU

A Y Ha@aa BEIRT with 128 sequence length

Throughput Latency

Batch size il ST (Query per second) (milliseconds)

Original 3-layer BERT 1 Azure Standard F16s_v2 (CPU) 6 157
ONNX Model 1 Azure Standard F16s_v2 (CPU) 111 9
with ONNX Runtime
Original 3-layer BERT 4 Azure NV6 GPU VM 200 20
Azure NV6 GPU VM
ONREMede A with ONNX Runtime =60 8

Azure NC65_v3 GPU VM
ONNX Model 64 with ONNX Runtime + System Optimization 10667 e
(Tensor Core with mixed precision, Same Accuracy)

On NVIDIA V100 GPUs we saw ~10,000 queries per
second throughput

Development time for new BERT scenarios was cut
from multiple days to a few hours



ONNX Runtime powered BERT Inference in offic

Key points In Word

b oy

G!'ad F 3t yOSE
OneDriveand Sharepoint

Ay I_I?feypointsmodel
A 3-layer BERT
A The P50 latency reduced by 3x over
the originaltraditional
ML basedsolution
A The development cost was

significantly reduced



ONNX Runtim® powerBERT Iinference

Bing Ranking Key Point in Office Bing Ads
3-layer BERT 3-layer BERT 3-layer BERT
Hugging Face Text Analytics in Azure Al BingFeeds
12-layer BERT 12-layer BERT 12-layer BERT
Speech & Language in Azure Cognitive service Questions suggestions in Bing X X

2-layer BERT 24-layer BERT



Model operationalization with ONNX

Train models with various
frameworks or services

Convert into ONNX with

ONNX Converters

HW accelerated inferencaith
ONNX Runtime

Frameworks

é Caffe2 f

/ 7,1 g
ﬁ}» fogmve 4\ MathWorks < PaddiePaddie

R

%CBoost e @xnet Q" Chainer

O PyTorch @ toar

Services
& Azure Custom Vision Service
& Auto Machine Learning Service

—> ONNX Model

-

Azure

Azure Machine Learning service

Ubuntu VM

Windows Server 2019 VM

Devices

Edge Cloud & Appliances

Edge & 10T Devices



Demo

PyTorcl BERT acceleration
with ONNX Runtime



http://aka.ms/pytorchbertwithort

