Data-centric Trusted Al

Soumi Das, Sourangshu Bhattacharya, Suparna Bhattacharya IIT Kharagpur, HPE

http://cse.iitkgp.ac.in/~sourangshu/

Email: sourangshu@cse.iitkgp.ac.in

Data Valuation and Subset Selection (DVSS)

Data Valuation – Estimate *contribution* of a training datapoint towards a task

Data Subset Selection – Select any *high-value subset* of a training dataset, which is of a fixed size. - Coreset.

A value function is defined on a subset, need not be additive.

Recent Methods:

- Influence Functions (ICML 2017)
- Data Shapley (ICML2019)
- Tracln (Neurips 2020)

Recent Methods:

- K-center Greedy (ICLR 2018)
- GraNd (Neurips 2021)
- HOST-CP (ECML 2021)

Desirable Properties of DVSS Techniques

comparable to model training on entire data.

dataset should perform as well as the whole dataset.

Architecture and algorithms for DVSS

 Decrease in Validation loss through a training trajectory can be estimated as:

$$TracIn(d, d') = \sum_{t} \eta_t \nabla l(\theta_t, d) . \nabla l(\theta_t, d')$$

- This equation scores the influence of training datapoint d on loss of test datapoint d'
- All checkpoints are impossible to store.
- Hence, select influential checkpoints
- Checkpoint selection takes time similar to training
- Decouple the checkpoint selection and data valuation or subset selection module.
- Simsel algorithm can be used for selection of diverse
- Data Valuation takes time similar to inference.
- Subset selection time depends on validation and training set size.

https://github.com/SoumiDas/CheckSel

Empirical Results on CIFAR10

Empirical Results on MS Office-Home dataset

Methods	Source ->Target											
	A->C	A->P	A->R	C->A	C->P	C->R	P->A	P->C	P->R	R-> A	R-> C	R->P
Random	45.03	57.74	56.5	48.9	57.74	56.5	48.9	45.03	56.5	48.9	45.03	57.74
k-center [5]	46.3	67.41	51.4	49.48	61.5	59.45	52.47	40.54	57.56	48.81	40.54	60.0
GraNd[1]	45.86	62.2	58.74	51.5	64.4	64.3	53.62	49.52	61.2	50.53	45.5	54.42
TracIn[4]	31.4	33.95	34.63	36.34	39.76	34.87	34.62	30.85	36.28	33.76	29.9	33.25
CheckSelect	47.99	70.11	67.49	51.61	69.18	65.48	54.4	57.32	69.03	50.75	48.64	64.41
Δ	1.69	2.7	8.75	0.11	4.78	1.18	0.78	7.8	7.83	0.22	3.14	4.41

7 – 8 % better accuracy for 20% subset selection over closest baseline.